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Recently, a novel image encryption scheme has been proposed based on a modified Henon map using 
hybrid chaotic shift transform. This paper analyzes the security of the original encryption scheme and 
finds it insecure against the chosen-plaintext attack. Meanwhile, an efficient strategy is proposed to break 
the original encryption scheme with several chosen-plaintext attacks. The experimental results show that 
all the keys can be revealed with a time complexity of only O (�MN logc(MN)�). Furthermore, some 
improvement suggestions are proposed.
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1. Introduction

With the rapid development of digital information technol-
ogy and network technology, digital images are increasingly be-
coming an irreplaceable form of information acquisition for daily 
communication. Digital images carry a lot of confidential informa-
tion due to their inherent characteristics, such as large capacity, 
high redundancy, and interpixel correlation [1,2]; the information 
in digital images is very different from traditional text informa-
tion and is vulnerable to safety hazards. Therefore, secure storage 
and transmission of digital images have become the primary con-
cern in multimedia communication. Image encryption is an effec-
tive method to prevent unauthorized access, such as interception, 
tampering, illegal copying and dissemination [3,4]. However, tradi-
tional encryption techniques including DES, AES and RSA expose 
many limitations to digital images with the characteristics of large 
storage capacity, high redundancy and strong correlation among 
adjacent pixels. To solve these problems, chaotic image encryp-
tion schemes have been proposed [5–8]. The encryption schemes 
based on chaos have certain properties, such as sensitivity to ini-
tial conditions and control parameters [9], complexity of com-
puting power [10] and pseudo-randomness; these properties have 
led many researchers to propose secure and efficient encryption 
schemes based on chaos.

So far, many chaotic-based encryption schemes have been pro-
posed. In [11], a novel cryptosystem based on transformed lo-
gistic maps was proposed using Fridrich’s encryption structure 
[12] in which six odd secret keys and three chaotic keys are in-
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volved. A previous study [13] proved that the scheme was insecure 
against the chosen-plaintext attack (CPA). Nevertheless, most en-
cryption schemes based on Fridrich’s permutation-diffusion model 
[14] demonstrated that 96.7% of bit values were unaltered [15,
16]. Unlike Fridrich’s encryption structure, one round modified 
permutation-diffusion architecture [17] was based on the bit level 
rather than the pixel level, and the diffusion stage was based on 
the output of the classical affine cipher rather than plain pixels. 
The scheme operated on the bit level can be used to reduce re-
dundancy and statistical links, so a variety of encryption schemes 
based on the bit level [18–21] have been proposed. However, this 
kind of scheme also has such shortcomings because there are 
repeated patterns in the permutation phase [21], and the opera-
tion requires considerable computation time [22]. The encryption 
scheme in [17] was broken successfully by Liu et al. in [23]. To 
improve the permutation performance, Wong et al. [24] proposed 
using an “add-and-then-shift” strategy by including some diffusion 
effects in the permutation phase where the iteration round and 
computational complexity can be reduced dramatically without af-
fecting the security level of the synthetic cryptosystem. In [25], a 
circular inter-intra-pixels bit-level permutation-confusion strategy 
was proposed that not only takes advantage of this approach in 
Fridrich’s design but also applies a confusion strategy to reduce the 
redundancy significantly. Bit-level circular shifting of each row has 
a repeated pattern and uniform bit distribution [26] that can de-
crease the correlation between adjacent high-level element planes.

In contrast, cryptanalysis is used to check whether the exist-
ing encryption mechanisms are practical or not. Many cryptanalytic 
methods [27,29,31,33] have been proposed to find out the security 
defects of the existing cryptosystems [28,30,32,34]. For instance, Li 
et al. in [27] applied CPA to break Wang’s encryption scheme [28]. 
Li et al. in [29] successfully obtained the equivalent secret key of a 
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Fig. 1. Flowchart of the original image encryption scheme.
chaotic image encryption algorithm based on information entropy 
[30] through a differential attack. Fan et al. in [31] broke the en-
cryption scheme in [32] by combining the ciphertext-only attack 
and CPA. Zhang et al. in [33] applied CPA to break the encryption 
scheme based on a hyperchaotic system [34] with only one round 
diffusion process. The common problem of these compromised en-
cryption schemes [28,30,32,34] is that the key stream is consistent. 
To overcome this shortcoming, different plaintext-related encryp-
tion schemes [35–37] have been proposed recently, in which the 
chaotic secret sequences are generated from both the secret key 
and the plain image at the same time.

In [38], a novel cryptosystem was proposed for encryption of 
gray images based on a modified Henon map using hybrid chaotic 
shift transform in which the chaotic sequences generated by a 
modified Henon map and sine map are applied to control the 
confusion through shift transform and the diffusion by the XOR 
operation. The scheme mainly includes two parts: the confusion 
process is controlled effectively by hybrid shift transform to change 
the pixels of the row and column, and the diffusion process is re-
strained availably by a chaotic matrix generated from a sine map. 
It is claimed that through the confusion and diffusion, images can 
be safely and effectively encrypted without being attacked. How-
ever, we found the original scheme was insecure against CPA. In 
this paper, we proposed a strategy to break it successfully. The 
major novelty of our cryptanalysis work is to eliminate the effect 
of the two-level diffusion by applying the permutation satisfy-
ing the distributive property with respect to XOR, which enriches 
the cryptanalysis research in terms of transforming the encryption 
structure.

This paper is organized in the following way. Section 2 briefly 
reviews the original encryption scheme. Section 3 demonstrates 
the detailed cryptanalysis method. The final section provides con-
cluding remarks.
2. Review of the original image encryption scheme

The original image encryption scheme is shown in Fig. 1, which 
is a novel image cryptosystem based on a modified Henon map 
(2D-MHM) and a sine map using hybrid chaotic shift transform 
(HCST). HCST is used to perform a confusion operation controlled 
by 2D-MHM, and the principle of diffusion by the XOR operation 
is achieved by using a chaotic matrix generated by a sine map.

As shown in Fig. 1, a plain image is encrypted through six 
phases: hybrid chaotic shift transform, boundary pixels substitu-
tion, shift rows transformation, the first level of diffusion by the 
XOR operation, diagonal scanning transformation and the second 
level of diffusion by the XOR operation.

2.1. Hybrid chaotic shift transform

Suppose the size of the image is M × N . Let I = {I(i, j)}M,N
i=1, j=1

and T = {T (i, j)}M,N
i=1, j=1 be the original image and its correspond-

ing shuffled image, respectively. Then, the process of HCST can be 
defined as

T1 = F1(I,B), (1)

T = F2(T1,C), (2)

where F1(·) and F2(·) denote the cyclic column shift transfor-
mation and the cyclic row shift transformation, respectively; B =
{bi}N

i=1 and C = {bi}M
i=1 are chaotic series matrices; bi and ci rep-

resent the step size of the cyclic up or down shift in column i
and the step size of the cyclic right or left shift in row i, respec-
tively. Moreover, the odd number of rows and columns are moved 
to the left and up, respectively, while the even numbers of rows 
and columns are moved in the opposite direction.



K. Zhou et al. / Digital Signal Processing 93 (2019) 115–127 117
Fig. 2. Flowchart of the proposed attack strategy.
2.2. Boundary pixels substitution and shift rows transformation

For the shuffled image T, the boundary pixel value T (i, j) of 
the first or last row is replaced by the value bT (i, j)+1 of the col-
umn shift matrix B. The boundary pixels substitution results in the 
image P = {P (i, j)}M,N

i=1, j=1.

P (i, j) =
{

bT (i, j)+1, i ∈ {1, M}
T (i, j), i ∈ (1, M)

1 ≤ j ≤ N. (3)

Additionally, shift rows transformation is applied to complicate 
dependence of the statistics of the ciphertext image on the plain-
text image through this scheme, which operates one row at one 
time by shifting the byte to the left. Let L = {L(i, j)}M,N

i=1, j=1 be the 
result of shift rows transformation, which can be mathematically 
represented as

L(i, j) =
{

P (i, j + i − 1), j − i + 1 ≤ N
P (i,mod( j + i − 1, N)), j − i + 1 > N.

(4)

2.3. First level of diffusion

The diffusion process is divided into two levels and used to il-
lustrate the effects of change in one bit of the plaintext on each 
bit of the ciphertext, which hides the statistical structure of the 
plaintext [40]. For the first level of diffusion, pixel values are 
changed randomly by the XOR operation with the chaotic matrix 
S = {S(i, j)}M,N

i=1, j=1 using Eq. (5).

D(i, j) = L(i, j) ⊕ S(i − 1, N) ⊕ S(i, j + 1)1 ≤ i ≤ M,

1 ≤ j ≤ N,
(5)

where ⊕ denotes the bitwise XOR operation, S is generated from 
the sine map, and D = {D(i, j)}M,N

i=1, j=1 indicates the image after the 
first level diffusion operation.

2.4. Diagonal scanning transformation

Diagonal scanning transformation starts in the upper left hand 
corner and ends at the lower right hand corner. At the begin-
ning of the transformation, the 2D image D is converted into a 
one-dimension (1D) array of size 1 × MN by scanning the im-
age diagonally. Next, the 1D array is converted into the 2D image 
O = {O (i, j)}M,N .
i=1, j=1
2.5. Second level of diffusion

In this second level of the diffusion stage, the pixel values 
are changed by the XOR operation for each digit with the previ-
ous cipher digit, current permutated pixels and the chaotic matrix 
S. After applying two rounds of the diffusion operation with the 
XOR operation, the encrypted image R = {R(i, j)}M,N

i=1, j=1 can be ob-
tained through Eq. (6).

R(i, j) =
{

O (i, j) ⊕ S(i, j), i = 1
O (i, j) ⊕ O (i − 1, j) ⊕ S(i, j),1 < i ≤ M

1 ≤ j ≤ N.

(6)

3. Cryptanalysis

To completely break the original encryption scheme, we need 
at most 256 + �n� chosen plaintext images. A flowchart of our 
proposed attack strategy is shown in Fig. 2, in which “Attack i” 
represents the ith CPA. First, the equivalent matrix Sd for two-
level diffusion is obtained by Attack 1. Second, since the diagonal 
scanning transformation is invertible, it is easy to get the map-
ping matrix of the transformations X and Y. Then, the equivalent 
matrix of the boundary pixels substitution Bp can be calculated 
by Attacks 2–256 with the help of Sd. After that, we can obtain 
shift matrices P1, P2, . . . , P�n� by Attacks 257–256 + �n� and the 
known matrix Sd. Next, the diffusion effect of the cipher image R
can be eliminated by the known matrix Bp and Sd. Eventually, the 
permutation-only image L′ is recovered to the plain image I′ with 
the help of the shift matrices P1, P2, . . . , P�n� .

3.1. Eliminating the two-level diffusion effect

In our cryptanalysis work, we must solve the problem of the 
two-level diffusion first. Although there is diagonal scanning trans-
formation between the two levels of diffusion, it is still easily to 
be broken using CPA. The permutated image L diffuses through 
two stages to become encrypted image R. It also goes through the 
diagonal scanning transformation between the two levels of diffu-
sion. To decrypt the targeted cipher image so that we can obtain 
the permutated image, the first thing we must do is to eliminate 
the two-level diffusion effect by Attack 1 in Fig. 2.

In our paper, the permutation process we studied only involves 
one-to-one mapping of pixel positions, which can be mathemati-
cally expressed as follows:

R = F (I), (7)
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Fig. 3. 1D image permutation schematic.
where F (·) denotes the permutation transformation, and each pixel 
I(i, j) in the plain image I uniquely corresponds to a specific pixel 
R(p, q) in the permutated image R. And the diffusion process we 
studied only involves the XOR operation, which can be mathemat-
ically defined as follows:

D = I ⊕ S, (8)

where S and D are the diffusion matrix and the diffused image, 
respectively.

The following propositions contribute to the elimination of the 
two-level diffusion effect and calculation of Sd. Note that the fol-
lowing propositions apply only when the permutation process is 
implemented by changing the pixel positions and the diffusion 
process is performed by the XOR operation.

Proposition 1. For the diffusion-permutation structure used in the en-
cryption scheme under study, the order of the diffusion process and the 
permutation process is equivalently commutative. Properly speaking, the 
permutation satisfies the distributive property formally with respect to 
the XOR.

For plain image I of size M × N, if the diffusion matrix is S, then

F (I ⊕ S) = F (I) ⊕ F (S). (9)

Proof. For the plain image I, pull it row by row into a 1D image 
VI of size MN × 1 with a permutation matrix P of size MN × MN , 
and pull the diffusion matrix S of size M × N row by row into a 
1D image VS of size MN × 1. Then, to prove the establishment of 
Eq. (9), we need to prove Eq. (10) first.

(VI ⊕ VS) × P = (VI × P) ⊕ (VS × P), (10)

where the permutation matrix P is an identity matrix that swaps 
the order of rows, and it satisfies

MN∑
j=1

P (i, j) = 1,1 ≤ i ≤ MN, (11)

MN∑
i=1

P (i, j) = 1,1 ≤ j ≤ MN. (12)

Suppose the 1D permutation-only image is VP of size MN ×
MN , then

VP = P × VI , (13)

where if P (i, j) = 1, there is a permutation mapping from i to 
MN × (i − 1) + j between the 1D plain image and the 1D per-
mutated image. Fig. 3 clearly shows the process for 1D image 
permutation.
Since matrix multiplication satisfies the distributive property of 
the XOR operation, it is obvious that Eq. (9) is true. Therefore, 
Proposition 1 has been proved.

Diagonal scanning transformation is a special permutation 
transform, and it satisfies the distributive property with respect 
to the XOR. An example in Fig. 4 is provided additionally to verify 
Proposition 1. Fig. 4(a) shows the process of diffusion by the XOR 
operation and then permutation, while Fig. 4(b) shows the process 
of permutation and then diffusion by the XOR operation.

In Fig. 4, assuming that there is an image of size 2 × 4, and 
the size of the diagonal scanning transformation matrix P is 8 × 8. 
It can be seen that the cipher images C in Fig. 4(a) and Fig. 4(b) 
respectively are the same, indicating that changing the order of 
permutation and diffusion would not affect the encryption result.

Therefore, the diagonal scanning transformation satisfies the 
distributive property with respect to the XOR, and the order of 
the diagonal scanning transformation and diffusion by the XOR 
operation in the original encryption scheme can be equivalently 
exchanged. �
Proposition 2. For the encryption scheme with a structure of permuta-
tion-diffusion or diffusion-permutation where the diffusion is only for 
the XOR operation, full zero images can be used as chosen plaintext im-
ages to eliminate the diffusion effect. More precisely, the ciphertext image 
of the full zero image is equivalent to the original or the permuted diffu-
sion matrix.

Proof. For an image encryption scheme with a structure of 
permutation-diffusion or diffusion-permutation where the diffu-
sion is only for the XOR operation, suppose the plain image is I of 
size M × N , the diffusion matrix is S, and the ciphertext image is 
C.

1) For the permutation-diffusion structure under study, the per-
mutation transformation is done first, and then the diffusion trans-
formation is carried out. Then

C = F (I) ⊕ S = P ⊕ S, (14)

where P is the permutation-only image of I.
If we take the full zero image I0 as the input image, the pixels 

of the full zero image I0 are not scrambled after the permutation 
phase, so the permutation-only image is still I0. After the diffusion 
stage, the ciphertext image C0 can be obtained.

C0 = F (I0) ⊕ S = I0 ⊕ S = S. (15)

Clearly, the obtained ciphertext image C0 is just equal to the diffu-
sion matrix S.

Thus, we can use the ciphertext image C0 to eliminate the dif-
fusion effect by the XOR operation.
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Fig. 4. Example of Proposition 1: (a) the process of diffusion by the XOR operation and then permutation; (b) the process of permutation and then diffusion by the XOR 
operation.
C ⊕ C0 = P ⊕ S ⊕ S = P. (16)

2) For the diffusion-permutation structure under study, the 
diffusion transformation is done first, and then the permutation 
transformation is carried out. Then

C = F (I ⊕ S) = F (D), (17)

where D is the diffusion-only image of I.
We also take the full zero image as the input image. As shown 

in Eq. (18), the diffused image is just the diffusion matrix S. There-
fore, the obtained ciphertext image C0 is exactly the permutated 
image of S.

C0 = F (I0 ⊕ S) = F (S). (18)

Based on Proposition 1, we can use the ciphertext image C0

to eliminate the diffusion effect by the XOR operation shown in 
Eq. (19).

C ⊕ C0 = F (I ⊕ S) ⊕ F (S)

= F (I ⊕ S ⊕ S)

= F (I) = P. �
(19)

3.1.1. Obtaining the matrix Sd
The matrix Sd can be used to eliminate the diffusion effect of 

the ciphertext image, which is equivalent to the ciphertext image 
of the full zero image and is only determined by the diffusion ma-
trix S. In other words, the ciphertext image of the full zero image 
can be used to eliminate the diffusion effect.

To get rid of the diffusion effect during the attack, Sd must be 
obtained. From Proposition 1, the cipher image R diffused by the 
second level can be obtained.

R(i, j) =
⎧⎨
⎩

D ′(i, j) ⊕ S ′(i, j) ⊕ S(i, j), i = 1
D ′(i, j) ⊕ D ′(i − 1, j) ⊕ S ′(i, j) ⊕ S ′(i − 1, j) ⊕ S(i, j),

i 	= 1,

(20)

where the image D′ = {D ′(i, j)}M,N
i=1, j=1 is the image D after the di-

agonal scanning transformation, and the matrix S′ = {S ′(i, j)}M,N
i=1, j=1

is the diffusion matrix S after the diagonal scanning transforma-
tion.

Meanwhile, it can be seen from Eq. (20) that the diffusion ef-
fect matrix Sd is only determined by the diffusion matrix S. For 
the full zero image, the permutation does not work, so the pixel 
values of D′ are still all zero. Thus, the ciphertext image of the full 
zero image can be used to eliminate the diffusion effect, which is 
exactly equivalent to the matrix Sd.

Based on Proposition 2, the result of the cipher image for any 
plain image exclusive or the cipher image of the full zero image is 
equivalent to elimination of the two-level diffusion effect. In other 
words, let R0 = {R0(i, j)}M,N be the encrypted image of the full 
i=1, j=1
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Fig. 5. Flowchart of elimination of the second level diffusion effect.

Fig. 6. Schematic diagram of the reverse diagonal scanning mechanism.
zero image, and R1 = {R1(i, j)}M,N
i=1, j=1 is the cipher image of any 

plain image. Then, R′ = {R ′(i, j)}M,N
i=1, j=1 is an image without the 

two-level diffusion effect if it is the result of R0 exclusive or R1.
Thus, we can obtain

Sd = R0, (21)

where R0 is the ciphertext image of the full zero image.

3.1.2. Eliminating the first level diffusion effect
A flowchart of elimination of the second level diffusion ef-

fect is shown in Fig. 5, where two chosen plain gray images 
I0 = {I0(i, j)}M,N

i=1, j=1 (Attack 1 in Fig. 2), which is full of zero pix-

els, and I1 = {I1(i, j)}M,N
i=1, j=1 (any Attack in Fig. 2), which can be 

any plain image, are used in an attack to eliminate the two-level 
diffusion effect.

Let the two cipher images be R0 = {R0(i, j)}M,N
i=1, j=1 and R1 =

{R1(i, j)}M,N
i=1, j=1. Based on Proposition 2, R0 is the required matrix 

Sd. Therefore, the result image R′ = {R ′(i, j)}M,N
i=1, j=1 of the XOR op-

eration in Eq. (22) is an image in which the second level diffusion 
effect is eliminated.

R ′(i, j) = R0(i, j) ⊕ R1(i, j). (22)

From Eq. (6), it is known that the cipher image R0 and R1 sat-
isfy

R0(i, j) =
{

O 0(i, j) ⊕ S(i, j), i = 1
O 0(i, j) ⊕ O 0(i − 1, j) ⊕ S(i, j), i 	= 1,

(23)

R1(i, j) =
{

O 1(i, j) ⊕ S(i, j), i = 1
O 1(i, j) ⊕ O 1(i − 1, j) ⊕ S(i, j), i 	= 1,

(24)

where O0 = {O 0(i, j)}M,N
i=1, j=1 and O1 = {O 1(i, j)}M,N

i=1, j=1 are the im-
ages obtained after the diagonal scanning transformation.

Thus, R′ can also be described as

R ′(i, j) =
⎧⎨
⎩

O 0(i, j) ⊕ O 1(i, j), i = 1
O 0(i, j) ⊕ O 1(i, j) ⊕ O 0(i − 1, j) ⊕ O 1(i − 1, j),

i 	= 1.

(25)
Meanwhile, to eliminate the second level diffusion effect by the 
XOR operation thoroughly, we know from Eq. (6) that it also needs 
to pass through the row transformation by the XOR operation as

O ′(i, j) =
{

R ′(i, j), i = 1
R ′(i, j) ⊕ R ′(i − 1, j), 1 < i ≤ M

,1 ≤ j ≤ N, (26)

where O′ = {O ′(i, j)}M,N
i=1, j=1 is the resulting cipher image of the 

elimination of the second level diffusion effect.
From Eq. (25), the cipher image O′ can also be represented as

O ′(i, j) = O 0(i, j) ⊕ O 1(i, j) 1 ≤ i ≤ M,1 ≤ j ≤ N. (27)

3.1.3. Obtaining the map of the diagonal scanning transformation
It is seen from the diagonal scanning transformation process 

of Section 2.4 that the transformation is reversible. A schematic 
diagram of a reverse diagonal scanning mechanism is shown in 
Fig. 6, which shows precisely that the pixel values are shuffled suf-
ficiently. The 2D matrix is first transformed into a 1D row vector. 
Then, the 1D row vector is converted into a 2D image.

How the map of diagonal scanning transformation is obtained 
is described in Algorithm 1, which simulates the diagonal scanning 
transformation process. The input parameters M and N are the size 
of the plain image, and the output parameters are the map of the 
diagonal scanning transformation X = {xi}MN

i=1 and Y = {yi}MN
i=1 . Sup-

pose the images before and after the transformation are converted 
into a 1D array, (i, j) is the coordinate of the original image and 
(xi, y j) is the coordinate after the diagonal scanning transforma-
tion.

3.1.4. Inverse diagonal scanning transformation
A flowchart of the inverse diagonal scanning transformation is 

shown in Fig. 7. For the inverse diagonal scanning transformation, 
it is known that the distributive law is satisfied by the operation of 
an exclusive or an inverse diagonal scanning transformation based 
on Proposition 1. Therefore, the images D0 = {D0(i, j)}M,N

i=1, j=1 and 
D1 = {D1(i, j)}M,N

i=1, j=1 can be obtained by the inverse diagonal 
scanning transformation with the map X and Y. Then, the im-
age D′ = {D ′(i, j)}M,N

i=1, j=1can be obtained by the XOR operation 
between D0 and D1.
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Fig. 7. Flowchart of the inverse diagonal scanning transformation.
Algorithm 1 Obtain the map of diagonal scanning transformation.
Input: The size of plain image M and N
Output: The map X and Y of diagonal scanning transformation, which represent a 
map from (i, j) to (Xi , Y j ) after the diagonal scanning transformation.

1: procedure DST_map(M , N) 20: count ← count + 1
2: i, j, X1 , Y1, count ← 1 21: if j + 1 ≤ N then
3: while i 	= M and j 	= N do 22: Xcount ← i
4: count ← count + 1 23: Ycount ← j + 1
5: if i + 1 ≤ M then 24: j ← j + 1
6: Xcount ← i + 1 25: else if i + 1 ≤ M then
7: Ycount ← j 26: Xcount ← i + 1
8: i ← i + 1 27: Ycount ← j
9: else if j + 1 ≤ N 28: j ← j + 1

10: Xcount ← i 29: end for
11: Ycount ← j + 1 30: end if
12: j ← j + 1 31: while i + 1 ≤ M and j − 1 ≥ 1 do
13: end if 32: count ← count + 1
14: end if 33: Xcount ← i + 1
15: while i − 1 ≥ 1 and j + 1 ≤ N do 34: Ycount ← j − 1
16: count ← count + 1 35: end while
17: Xcount ← i − 1 36: end while
18: Ycount ← j + 1 37: return X, Y
19: end while 38: end procedure

ind = (i − 1) × M + j,1 ≤ i ≤ M,1 ≤ j ≤ N, (28)

D0(xind, yind) = O 0(i, j), (29)

D1(xind, yind) = O 1(i, j), (30)

where ind is the index of X and Y.

D ′(i, j) = D0(i, j) ⊕ D1(i, j) 1 ≤ i ≤ M,1 ≤ j ≤ N. (31)

From Eq. (5) in the first level of diffusion by the XOR operation, it 
is obtained as{

D0(i, j) = L0(i, j) ⊕ S(i − 1, N) ⊕ S(i, j + 1)

D1(i, j) = L1(i, j) ⊕ S(i − 1, N) ⊕ S(i, j + 1)

1 ≤ i ≤ M,1 ≤ j ≤ N.

(32)

Thus,

D ′(i, j) = L0(i, j) ⊕ L1(i, j) 1 ≤ i ≤ M,1 ≤ j ≤ N. (33)

In other words, D′ has been removed from the first level of 
diffusion by the XOR operation. As a result, we can obtain

L′(i, j) = D ′(i, j) 1 ≤ i ≤ M,1 ≤ j ≤ N, (34)

where L′ = {L′(i, j)}M,N
i=1, j=1 is the cipher image in which the two-

level diffusion effect has been eliminated.
Let I0 = {I0(i, j)}M,N

i=1, j=1 be the full zero image. Because each 
row and column have a pixel value of 0, I0 is apparently un-
changed during the process of HCST. Therefore, the result of HCST 
T0 = {T0(i, j)}M,N

i=1, j=1 can be expressed as

T1 = I0, (35)

T0 = T1. (36)

After the boundary pixels substitution, the pixel values for the 
first and last rows of T0 are replaced with the value of b1. There-
fore, we can obtain
P0 =

⎡
⎢⎢⎢⎢⎢⎣

b1 b1 b1 · · · b1
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
b1 b1 b1 · · · b1

⎤
⎥⎥⎥⎥⎥⎦

M×N

, (37)

where P0 = {P0(i, j)}M,N
i=1, j=1 is the result of the boundary pixels 

substitution, and all of its rows, except the first and last row, have 
a pixel value of 0.

Then, L0 can be obtained after shift rows transformation from 
Eq. (4)

L0 =

⎡
⎢⎢⎢⎢⎢⎣

b1 b1 b1 · · · b1
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
b1 b1 b1 · · · b1

⎤
⎥⎥⎥⎥⎥⎦

M×N

. (38)

Thus

L′(i, j) =
{

b1 ⊕ L1(i, j), i ∈ {1, M}
L1(i, j), i ∈ (1, M)

. (39)

To illustrate how to eliminate the two-level diffusion effect, for 
1 chosen plaintext image I0, all of its pixels are given a value of 0, 
and its cipher image is shown in Fig. 8(a1). For the other chosen-
plaintext image I1 ∈ [0, 255] which is shown in Fig. 8(a2), we want 
to attack its cipher image, which is shown in Fig. 8(a3). The XOR 
result between them is shown in Fig. 8(b1). Then, the two results 
regarding the XOR operation of the row and the inverse diagonal 
scanning transformation are shown in Fig. 8(b2) and Fig. 8(b3), re-
spectively. It is obvious that the two-level diffusion from the XOR 
operation is eliminated from the cipher image.

3.2. Reverse shift rows transformation

In the original encryption scheme, shift rows transformation is 
performed before the diffusion phase. Therefore, it is needed to 
perform the reverse shift rows transformation before the attack 
of boundary pixels substitution. Because the transformation rule 
is simple and does not require a key to participate, it is easy to 
break.

From Eq. (4), the image needs to be transformed by shifting 
rows in the encryption process. Therefore, the reverse shift rows 
transformation is required during the attack process. The reverse 
shift rows transformation moves the pixels of each row to the right 
by byte, which means row 1 no longer encounters any other shift 
and the last row is shifted by M − 1 bytes. This operation can be 
represented as

P ′(i, j) =
{

L′(i, j − i + 1), j − i + 1 > 0
L′(i, j − i + 1 + N), j − i + 1 ≤ 0

,1 ≤ j ≤ N, (40)

where P′ = {P ′(i, j)}M,N
i=1, j=1 is the result of reversing the shift rows 

transformation.
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Fig. 8. Experiments of eliminating two-level diffusion. (a1) cipher image of the cho-
sen plain image with all 0 pixels, (a2) the other chosen plain image, (a3) cipher 
image corresponding to (a2), (b1) cipher image corresponding to the results of (a1) 
and (a3) from the XOR operation, (b2) cipher image corresponding to (b1) after the 
XOR operation of the row, and (b3) cipher image corresponding to (b2) after inverse 
diagonal scanning transformation.

3.3. Computing the boundary replacement matrix Bp

After solving the shift rows transformation, we should obtain 
the boundary replacement matrix Bp = {Bpi}N

i=1. The boundary re-
placement matrix determines the substitution sequence used in 
the boundary pixels substitution process where the first and last 
rows of the image are replaced with pixels. However, it is diffi-
cult to directly obtain the required replacement matrix B in the 
original encryption scheme, and we attempt to find the equivalent 
substitution matrix Bp by Attacks 2-256 instead.

A flowchart of the process for computing the boundary replace-
ment matrix is shown in Fig. 9 from Eq. (39). For a cipher image 
after the elimination of the two-level diffusion effect, its first and 
last rows are computed with b1 by the XOR operation. Suppose the 
pixel values of the image Iall_val are all val ∈ [1, 255]. In the original 
encryption scheme, its image is not permutated in the process of 
confusion. However, the pixel values for its first and last rows are 
replaced with a value of bval+1 from Eq. (3). First, its cipher image 
Rall_val is removed from the two-level diffusion effect. As a result, 
L′

all_val = {L′
all_val(i, j)}M,N

i=1, j=1 can be obtained.

L′
all_val(i, j) =

{
b1 ⊕ bval+1, i ∈ {1, M}
Lall_val(i, j), i ∈ (1, M)

. (41)

From Eq. (41), each cipher image after the elimination of the 
two-level diffusion effect L′

all_val has its first row and last row de-
termined with B. Nevertheless, it is hard to figure out what B is. 
Therefore, we can easily figure Bp out, which is defined as

Bpval+1 = b1 ⊕ bval+1,1 ≤ val ≤ 255. (42)
Because the original pixel value of val is replaced with Bpval+1
after the elimination of the two-level diffusion effect, the replaced 
pixel value of Bpval+1 should be substituted for val in the process 
of the attack.

3.4. Obtaining the permutation equivalent mapping

After the boundary replacement matrix Bp has been calculated, 
the cipher image can be restored to the permutation-only image T.

T (i, j) =
{

Bp P (i, j), i ∈ {1, M}
P (i, j), i ∈ (1, M)

,1 ≤ j ≤ N. (43)

Therefore, the latest cryptanalysis results [39] for permutation-
only image encryption schemes can be used to obtain the per-
mutation equivalent mapping. From Lemma 1 used in [39], the 
permutation equivalent mapping can be acquired by n pairs of 
plain/cipher images.

n ≥ ⌈
logc(MN)

⌉
, (44)

where c is the number of assigned values in the locations or dif-
ferent color intensities, MN denotes the number of locations, and 
operation �x� rounds variable x to the nearest integer toward in-
finity. In this paper, c = 256 and the number n of gray images can 
be calculated by Eq. (45).

n = ⌈
log256(MN)

⌉
. (45)

For a plain gray image I = {I(i, j)}M,N
i=1, j=1, elements of the loca-

tion vector can be placed through p = {pi}MN
t=1 = [0, 1, 2, · · · , MN −

1]. Furthermore, the number of chosen plain gray images to attack 
is also n.

1) For instance, if the size of a plain gray image is 256 ×
256, the number n = 2 and the number of chosen plain im-
ages is 2. First, each element of the vector p = {pi}256×256

t=1 =
[0, 1, 2, · · · , 256 × 256 − 1] can be arranged row by row in ma-
trix A1 of 256 × 256, of which each element includes 2 digits 
in base 256 across the character set [0, 1, 2, · · · , 255] to express 
[0, 1, 2, · · · , 256 × 256 − 1].

A1 =⎡
⎢⎢⎢⎢⎢⎣

(0)(0) (0)(1) (0)(2) · · · (0)(255)

(1)(0) (1)(1) (1)(2) · · · (1)(255)
...

...
...

. . .
...

(254)(0) (254)(1) (254)(2) · · · (254)(255)

(255)(0) (255)(1) (255)(2) · · · (255)(255)

⎤
⎥⎥⎥⎥⎥⎦

,

256×256

(46)

where the element (q1)(q2) is corresponding to 256 ×q1 +q2 of p.
Next, two matrices with entries 0, 1, 2, · · · , 255 are obtained 

by splitting matrix A1 into two bit-plane images that should be 
the chosen gray plain images. If the chosen gray plain images are 
supposed to be I256 = {I256(i, j)}M,N (Attack 256 in Fig. 2) and 
i=1, j=1
Fig. 9. Flowchart of the process for computing the boundary replacement matrix.



K. Zhou et al. / Digital Signal Processing 93 (2019) 115–127 123
Fig. 10. Flowchart for obtaining the permutation rule.
I257 = {I257(i, j)}M,N
i=1, j=1 (Attacks 257 in Fig. 2), they can be defined 

as

I256 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 2 · · · 255
0 1 2 · · · 255
...

...
...

. . .
...

0 1 2 · · · 255
0 1 2 · · · 255

⎤
⎥⎥⎥⎥⎥⎦

256×256

, (47)

I257 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
1 1 1 · · · 1
...

...
...

. . .
...

254 254 254 · · · 254
255 255 255 · · · 255

⎤
⎥⎥⎥⎥⎥⎦

256×256

. (48)

A flowchart for obtaining the permutation equivalent mapping 
p is shown in Fig. 10.

Meanwhile, the plain image of I256 is denoted by R256 =
{R256(i, j)}M,N

i=1, j=1. Similarly, the plain image of I257 is denoted by 
R257 = {R257(i, j)}M,N

i=1, j=1. The permutation equivalent mapping is 
obtained as follows:
Step 1 Eliminate the two-level diffusion effect with the known Sd

O 256(i, j) = Sd(i, j)⊕ R256(i, j) 1 ≤ i ≤ 256,1 ≤ j ≤ 256. (49)

D256(i, j) =
{

O 256(i, j), i = 1
O 256(i, j) ⊕ O 256(i − 1, j),1 < i ≤ 256,

1 ≤ j ≤ 256.

(50)

Then, do the inverse diagonal scanning transformation as{
ind = (i − 1) × M + j
L(xind, yind) = D(i, j)

1 ≤ i ≤ 256,1 ≤ j ≤ 256. (51)

Next, reverse the shift rows transformation as

P256(i, j) =
{

L256(i, j + i − 1), j + i − 1 ≤ N
L256(i, ( j + i − 1)modN), j + i − 1 ≤ 0

(52)

Analogously, P257 is obtained in the same way.
Step 2 Calculate the permutation-only images T255 and T256 with 
the known Bp.

T256(i, j) =
{

Bp(1, P256(i, j)), i ∈ {1,256}
P256(i, j), i ∈ (1,256)

, 1 ≤ j ≤ 256. (53)

T257(i, j) =
{

Bp(1, P257(i, j)), i ∈ {1,256}
P257(i, j), i ∈ (1,256)

, 1 ≤ j ≤ 256. (54)

Step 3 Obtain the permutation matrix Tp = {T p(i, j)}256,256
i=1, j=1.

Tp = 256 × T257 + T256. (55)

Step 4 Obtain the permutation vector p = {pi}256×256
i=1 by stretching 

the matrix Tp row by row.
{
ind = (i − 1) × 256 + j
pind = T p(i, j)

, 1 ≤ i ≤ 256,1 ≤ j ≤ 256, (56)

where ind is the index of the permutation vector p.
2) If the size of a plain gray image is 512 × 512, the loca-

tion vector p = {pi}512×512
i=1 = [0, 1, 2, · · · , 512 × 512 − 1] can be 

expanded to n = 3 digits and three chosen plain gray images are 
needed for the attack.

A2 =⎡
⎢⎢⎢⎢⎢⎣

(0)(0)(0) · · · (0)(0)(255) (0)(1)(0) · · · (0)(1)(255)

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
(0)(254)(0) · · · (0)(254)(255) (0)(255)(0) · · · (0)(255)(255)
(1)(0)(0) · · · (1)(0)(255) (1)(1)(0) · · · (1)(1)(255)

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
(3)(254)(0) · · · (3)(254)(255) (3)(255)(0) · · · (3)(255)(255)

⎤
⎥⎥⎥⎥⎥⎦

512×512

.

(57)

Then, three matrices with entries 0, 1, 2, · · · , 255 are obtained 
by splitting matrix A2 into three bit-plane images. If the two 
chosen plain images are assumed to be I256 = {I256(i, j)}M,N

i=1, j=1, 
I257 = {I257(i, j)}M,N

i=1, j=1 and I258 = {I258(i, j)}M,N
i=1, j=1, bit-plane 0 is 

assigned to I256; bit-plane 1 is assigned to I257; and bit-plane 2 is 
assigned to I258, respectively. The permutation equivalent mapping 
is calculated in the same manner shown in 1) above.

To illustrate this process, an image of 256 × 256 is used as an 
example, and we still want to attack its cipher image. From Fig. 10, 
the permutation vector p can be acquired from the chosen plain 
image I255 of size 256 × 256 and I256 of size 256 × 256. Fig. 11
shows the results for obtaining permutation equivalent mapping. 
The images from the first column to the last are the plain images, 
cipher images, the images after the elimination of the two-level 
diffusion effect, the images after reversing the shift rows trans-
formation and the retrieved permutation-only images, respectively. 
The first row shows the conversion process for I256 and the second 
row shows the conversion process for I255. Taking the plain images 
(a1), (b1) and (c1) in Fig. 11 as the input images, the ciphertext 
images (a2), (b2) and (c2) in Fig. 11 can be obtained through the 
original encryption system (see Section 2). Then, the images af-
ter eliminating the diffusion effect, (a3), (b3) and (c3) in Fig. 11
are obtained by eliminating the two-level diffusion effect (see Sec-
tion 3.1). After that, the permutation-only images (a4), (b4) and 
(c4) in Fig. 11 can be obtained by reverse shift rows transformation 
(see Section 3.2) and boundary pixels substitution (see Section 3.3).

From Eq. (47), we can see each column of I256 has the same 
elements. After the permutation of HCST, its columns get permu-
tated first and then the rows become permutated. As a result, in 
Fig. 11(a5), the corresponding retrieved permutation-only image 
I256 is full of diagonal stripes. In contrast, elements in each row 
of I257 are the same. After the permutation of HCST, its columns 
are not messed up, but its rows are messed up. Therefore, the cor-
responding retrieved permutation-only image T257 in Fig. 11(b5) 
is also full of diagonal stripes. Additionally, it can be still seen 



124 K. Zhou et al. / Digital Signal Processing 93 (2019) 115–127
Fig. 11. CPA for obtaining the permutation equivalent mapping: images from the first column to the last are the plain images, cipher images, the images after the elimination 
of the two-level diffusion effect, the images after reversing the shift rows transformation and the retrieved permutation-only images, respectively.
that the left pixel of the diagonal stripe has a small value and 
a darker color. In Fig. 11(c1), only the first element of the plain 
image is nonzero. After the elimination of the two-level diffu-
sion effect, the image in Fig. 11(c3) has only one nonzero pixel 
(140, 58). Then after the inverse diagonal scanning transformation, 
only the element (252, 16) is a nonzero pixel. From Section 3.3, 
it is known that the pixels in row 252 should move 251 bytes to 
the right circle. Therefore, it is shown in Fig. 11(c5) that the re-
trieved permutation-only image includes only one nonzero pixel 
located at (252, 11). This location is the result of moving 5 bytes 
to the left or recycling mobile 251 bytes to the right. Based on 
Eq. (46), elements of the permutation matrix Tp can be obtained 
by combining Fig. 11(a5) and Fig. 11(b5). The obtained matrix Tp

falls within scope [0, 1, 2, · · · , 256 × 256 − 1] without repetition. 
These results test the correctness of our cryptanalysis method by 
measuring the permutation equivalent mapping.

3.5. The overall deciphering process

For any cipher image R ∈ [0, 255], a flowchart of the attack 
strategy is shown in Fig. 2, and the attack steps are described as 
follows:

Step 1 Obtain the matrix Sd via a chosen plain image (Attack 1 in 
Fig. 2) as stated in Section 3.1.1. Based on Proposition 1 and 
Proposition 2, the matrix Sd is exactly the cipher image of 
the plain image full of zero pixels.

Step 2 Obtain the map of diagonal scanning transformation X and 
Y by simulating the process of transformation in Fig. 6.

Step 3 Eliminate the two-level diffusion effect through the known 
matrix Sd, X and Y using the following elimination sub-
steps.
Sub-Step 1 Calculate the cipher image R′ by R and Sd with 

the XOR operation.
Sub-Step 2 Obtain the cipher image O′ by the XOR opera-

tion for the row of R′ .
Sub-Step 3 Obtain the cipher image D′ through the inverse 
diagonal scanning transformation on O′ with the 
known maps X and Y, as described in Section 3.1.4.

Sub-Step 4 Obtain the cipher image L′ , which is the result 
of eliminating the two-level diffusion effect.

Step 4 Obtain the cipher image P′ by the shift rows transformation 
on L′ , as described in Section 3.2.

Step 5 Calculate the boundary replacement matrix Bp via 256 cho-
sen plain images (Attacks 1-256 in Fig. 2), as discussed in 
Section 3.3.

Step 6 Calculate the permutation-only image T′ from the calcu-
lated boundary replacement matrix Bp and the cipher im-
age P′ .

Step 7 Obtain the permutation equivalent mapping with known 
variables in Section 3.4.

Step 8 Obtain the recovered plain image from the calculated p and 
P′ using the following inverse permutation sub-steps.
Sub-Step 1 Stretch the permutation-only image P′ ∈ [0, 255]

into vectors V = {V (i)}MN
i=1 row by row.

Sub-Step 2 Descramble the vector V above to generate vec-
tors V ′ = {V ′(i)}MN

i=1 using Eq. (49).

V ′(p(i) + 1
) = V ′(i) 1 ≤ i ≤ MN. (58)

Sub-Step 3 Rearrange the new vectors V ′ above into the 
recovered plain image I′ row by row.

The original encryption scheme is performed based on the pixel 
level, which can be applied to any type of image of any size if 
it has a gray format. Therefore, any image database that contains 
gray images is available. The USC-SIPI image database [41], which 
is widely used in image processing and used to verify the valid-
ity of the cryptanalysis work. The simulation results show that 
our proposed cryptanalysis can decrypt all the gray image cryp-
tographic images. To illustrate our simulation results, three cipher 
images of 256 × 256 are used for verification. Three lines in Fig. 12
show experimental images entitled “Peppers”, “Chemical plant” 
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Fig. 12. The validity of the proposed cryptanalysis: images from column 1 to column 6 show plain images, cipher images, images with the diffusion effect eliminated, 
retrieved permutation-only images, final restored images and the XOR results for column 1 and column 5.
and “Lena”, respectively. From column 1 to column 5, plain im-
ages, cipher images, images with the diffusion effect eliminated, 
retrieved permutation-only images and restored images are dis-
played, respectively. Taking the plain images (a1), (b1) and (c1) 
in Fig. 12 as the input images, the ciphertext images (a2), (b2) 
and (c2) in Fig. 12 can be obtained through the original encryp-
tion system (see Section 2). Then, images (a3), (b3) and (c3) in 
Fig. 12 are obtained by eliminating the two-level diffusion effect 
(see Section 3.1). After that, the permutation-only images (a4), (b4) 
and (c4) in Fig. 12 can be obtained by reverse shift rows trans-
formation (see Section 3.2) and boundary pixels substitution (see 
Section 3.3). Finally, the restored images (a4), (b4) and (c4) in 
Fig. 12 can be obtained through permutation equivalent mapping 
(see Section 3.4). Fig. 12 shows that the restored images in column 
5 and the plain images in column 1 look completely identical. In 
fact, the images are shown in column 6 after applying the XOR 
operations between the plain images and corresponding recovered 
images, each of which has all zero pixels. This result demonstrates 
that there is not one pixel that is different between the plain im-
age and corresponding restored image, which shows that all pixels 
in the original image have been restored.

3.6. Computational complexity analysis

For our cryptanalysis work, 256 + �n� plain images are needed 
for an attack in which one chosen plaintext image full of 0 pixels 
is used to obtain the matrix Sd, 255 chosen plaintext images are 
applied to compute the equivalent substitution matrix Bp, and �n�
chosen plaintext images are used to obtain the permutation map. 
For a cipher image of size 256 × 256, the number of chosen plain-
text images is 258, and the time complexity is O (258 × 256 × 256)

close to O (224). Therefore, the number of at tacks is mainly used 
to solve the replacement matrix.

All the experiments were executed on a personal computer 
equipped with an Intel® Core™ i7-7500U 2.90 GHz CPU and 8 GB 
memory capacity. We use MATLAB R2016b to do all simulation 
experiments (the source code is available at https://github .com /
Table 1
Execution time (seconds).

Image size Encryption Deciphering

Replacement cycle Others

256 × 256 0.3091 2.1990 0.2007
512 × 512 1.2683 10.5439 0.9685
1024 × 1024 4.5026 49.5824 4.7596

ZhouKanglei /Cryptanalysis -of -MHM). The method we proposed for 
the execution time for different types of images is shown in Ta-
ble 1. To ensure the accuracy of the experiment, different images 
were simulated many times, and the average value was obtained. 
From Table 1, we can conclude that the deciphering period and 
encryption period increase as the size of the image increases over 
time. Obviously, the equivalent replacement cycle for solving the 
replacement matrix is the main factor that restricts the decipher-
ing efficiency.

From these results, in terms of time complexity analysis and 
actual running time analysis, solving the equivalent replacement 
matrix Bp costs a lot in the deciphering process. So, if the bound-
ary substitution is not considered, the number of chosen plain-
text images is 1 + �n�. Meanwhile, the actual deciphering period 
is greatly reduced from Table 1. Additionally, take the three im-
ages used in Section 3.5 as an example in which three lines in 
Fig. 13 show experimental images entitled “Peppers”, “Chemical 
plant” and “Lena”, respectively. From column 1 to column 5, plain 
images, cipher images, images with the diffusion effect eliminated, 
retrieved permutation-only images and restored images are dis-
played, respectively. Taking the plain images (a1), (b1) and (c1) 
in Fig. 13 as the input images, the ciphertext images (a2), (b2) 
and (c2) in Fig. 13 can be obtained through the original encryption 
system (see Section 2). Then, images (a3), (b3) and (c3) in Fig. 13
are obtained by eliminating the two-level diffusion effect (see Sec-
tion 3.1). After that, the permutation-only images (a4), (b4) and 
(c4) in Fig. 13 can be obtained by reverse shift rows transformation 
(see Section 3.2). Finally, the restored images (a4), (b4) and (c4) in 

https://github.com/ZhouKanglei/Cryptanalysis-of-MHM
https://github.com/ZhouKanglei/Cryptanalysis-of-MHM


126 K. Zhou et al. / Digital Signal Processing 93 (2019) 115–127
Fig. 13. The validity of the proposed cryptanalysis without the replacement: images from column 1 to column 6 show plain images, cipher images, images with the diffusion 
effect eliminated, retrieved permutation-only images, final restored images and the XOR results for column 1 and column 5, respectively.
Fig. 13 can be obtained through permutation equivalent mapping 
(see Section 3.4). Fig. 13 shows that the restored images in column 
5 and the plain images in column 1 do not look very different. 
Furthermore, the images are shown in column 6 after applying 
the XOR operations between the plain images and corresponding 
recovered images, each of which have the 766 nonzero pixels. Nev-
ertheless, the restored pixels are close to 98.83%. Therefore, the 
attack can be considered a success. Meanwhile, the deciphering 
efficiency is greatly improved, which is suitable for large-scale de-
ciphering.

3.7. Method comparison

The confusion and diffusion structure used in the original en-
cryption scheme has been cryptanalyzed by multiple methods. 
Analysis of the experiment shows that the computational complex-
ity to break the permutation phase is O (�MN logc(MN)�) [39]. Ad-
ditionally, some researchers discussed in [32,42,43] that one round 
or several rounds of confusion and diffusion schemes can be bro-
ken using CPA. While these cryptanalysis approaches have simple 
calculations, they can break plaintext-related encryption schemes 
[32]. It is worth noting that we only use one ciphertext image of 
the known plaintext image to eliminate diffusion effects. Given the 
boundary pixels substitution, we need 255 chosen plaintext im-
ages, which will add to the complexity of our work. Therefore, we 
can choose to ignore the substitution and still obtain good results.

4. Conclusion

This paper attacked a chaotic image encryption scheme pro-
posed recently, which is based on a modified Henon map using 
hybrid chaotic shift transform. It was claimed that the original en-
cryption scheme could resist several known attacks. However, by 
using our proposed method, the original encryption scheme can 
be effectively cracked with 256 +�n� chosen plaintext images. Fur-
thermore, only 1 + �n� chosen plaintext images are required if 
the boundary pixels are not considered. Experiment verifies the 
effectiveness of our cryptanalysis. The execution time is also satis-
factory.

In order to improve the security of the cryptosystem, we give 
the following suggestions: 1) In the HCST and boundary pixels sub-
stitution phases, the initial values and parameters should not be 
the same. 2) It can be proved that the two-level diffusion in the 
original scheme is equivalent to one-level diffusion, which reduces 
the security of the cryptosystem greatly. Therefore, it is necessary 
to improve the structure of the encryption. 3) The encryption key 
should be associated to the plaintext images so that the attacker 
cannot reveal consistent key streams from different chosen plain-
text images.
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