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Hierarchical Graph Convolutional Networks for
Action Quality Assessment
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Abstract—Action quality assessment (AQA) automatically eval-
uates how well humans perform actions in a given video, a
technique widely used in fields such as rehabilitation medicine,
athletic competitions, and specific skills assessment. However,
existing works that uniformly divide the video sequence into
small clips of equal length suffer from intra-clip confusion
and inter-clip incoherence, hindering the further development
of AQA. To address this issue, we propose a hierarchical
graph convolutional network (GCN). First, semantic information
confusion is corrected through clip refinement, generating the
‘shot’ as the basic action unit. We then construct a scene graph
by combining several consecutive shots into meaningful scenes to
capture local dynamics. These scenes can be viewed as different
procedures of a given action, providing valuable assessment cues.
The video-level representation is finally extracted via sequential
action aggregation among scenes to regress the predicted score
distribution, enhancing discriminative features and improving
assessment performance. Experiments on the AQA-7, MTL-
AQA, and JIGSAWS datasets demonstrate the superiority of the
proposed hierarchical GCN over state-of-the-art methods.

Index Terms—Action quality assessment, Graph convolutional
neural networks, Human action understanding.

I. INTRODUCTION

AS an important extension of human action recognition
[1], [2], automated vision-based action quality assess-

ment (AQA) from a given action instance can be used as
an alternative to avoid personal judgment bias [3]. The goal
of AQA is to quantify how well actions are performed [4]
from the same class, as opposed to action recognition [5],
[6] that is to identify what actions are performed in a given
action from different classes. Since the difference among intra-
class samples is always subtle, AQA is considered to be a
challenging problem [7]. In recent years, AQA has gained
increasingly widespread attention due to its wide range of real-
world applications such as rehabilitation medicine [8], [9],
[10], athletic competition [6], [11], [12], and specific skills
assessment [13], [14].

Existing AQA approaches mainly focus on sports analysis,
which can be divided into pose-based methods and vision-
based methods according to the difference of the input modal-
ity. Early methods [4] mainly depend on pose-based features
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Fig. 1. The main idea of the proposed hierarchical method. The first goal
is to correct the semantic information confusion of initial clips in order to
obtain the shots. Secondly, meaningful scenes are obtained through the shot
reduction process. The final enhanced video-level representation is extracted
by using the action aggregation operation.

to regress quality scores. However, performing pose estimation
in the sports domain is difficult [15]. The estimated poses are
usually inaccurate with missing parts due to the crouching and
occlusion of the athlete’s body, as shown in previous works
[4], [15]. Such errors at any moment may affect the final
assessment performance. Most importantly, pose-only features
do not take into account visual cues like splashes, which are
crucial to judging. The state-of-the-art research focuses on
vision-based methods [11], [12], [16], [17] as they can make
full use of the visual features provided by image sequences
and have achieved great success in recent years.

A general pipeline of vision-based AQA frameworks in-
cludes three phases: feature extraction, aggregation, and score
regression. Existing AQA datasets [18], [19], [20] are mainly
collected in sports competitions such as the Olympic games.
They are usually quite small with a couple of hundred samples,
e.g., there are only 176 gymnastic vault samples in the AQA-7
dataset [18]. To avoid over-fitting due to training from small
datasets, most existing methods adopt powerful backbone
networks such as C3D [21] and I3D [6] as the feature extractor,
which are usually pre-trained on large action recognition
datasets and it is hypothesized that action recognition features
can transfer well to the AQA task. These backbones with
the structure of 3D convolutional neural networks (CNNs) are
very memory and computationally intensive, which limits their
usage to only small-sized clips. Additionally, the whole action
sequence at every moment provides vital clues for AQA that
the athlete can make or lose points [19]. Therefore, extracting
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keyframes is an effective approach for action recognition, but
it is not feasible for AQA.

To trade off sequence length and visual cues, most works
[11], [12], [7] uniformly divide the entire video sequence
into small clips of equal length (usually 16 frames long),
compute spatial-temporal features independently for each clip,
and aggregate these clip-level features to generate the video-
level representation on average. However, such clip division
and aggregation strategies suffer from the intra-clip confusion
and inter-clip incoherence problems, which greatly limits their
performance. On the one hand, the uniform division causes
incompleteness or redundancy in each clip of motion-related
semantic information. That is, a clip may lack information
about motion information or may also contain information
belonging to other groups. We dub this situation as intra-
clip confusion. Exact distribution of motion information in
different clips is closely related to scoring for local action
details. Hence, eliminating the information confusion problem
is key for accurate assessment. On the other hand, a mean-
ingful scoring procedure may span several motion units and
a single unit is insufficient to observe the global dynamics of
actions. We dub this case as inter-clip incoherence. Inaccurate
organization of the motion information contained in the scene
will lead to score errors in an action procedure and affect the
final scoring. Therefore, it is crucial to explore the hierarchical
relationship between the action procedure and the motion unit.

At the same time, existing aggregation methods such as
average pooling [22] and long short-term memory (LSTM)
[19] are impossible to explicitly explore the local and global
dynamics of actions. To achieve a reasonable clip division, a
straightforward solution [23], [7] is to perform the boundary
detection [24] w.r.t. the corresponding basic motion units
before training. However, excessive or incorrect divisions
may lead to the loss of important temporal information that
restricts AQA performance. In addition, manual labels of
boundaries are expensive to obtain and are not included
in the majority of existing datasets. Therefore, mining the
potential relationships between different clips is an important
compromise. Inspired by the structured video analysis [25],
we define a basic motion unit as a shot, containing several
frames. Several consecutive shots constitute a meaningful
scene and a kind of action consists of different scenes. Based
on such a hierarchical structure, we propose an end-to-end
hierarchical graph convolutional network (GCN) to address
the intra-clip confusion and inter-clip incoherence problems.

As both uniform clip division and dynamic boundary detec-
tion would lead to information confusion, we adopt an end-to-
end manner to explore hierarchical relationships for accessing
the quality of actions. As shown in Figure 1, we first propose
the clip refinement module to correct the semantic information
confusion of each clip. To solve the inter-clip incoherence
problem, a scene graph is then constructed by combining
several consecutive clips into a meaningful scene. Next, the
video-level representation is extracted by action aggregation.
Finally, considering that the action quality score given by
multiple judges is often uncertain and the label distribution
learning can fit AQA datasets better than the score regression
[11], [16], we treat AQA as the score distribution regression

and directly map the video-level representation to the Gaussian
score distribution. The final score is sampled from such a score
distribution. We have conducted extensive experiments on
three AQA datasets, including AQA-7 [18], MTL-AQA [19],
and JIGSAWS [20]. The experimental results demonstrate that
the proposed method outperforms the state-of-the-art.

The source code of this research is available at https:
//github.com/ZhouKanglei/HGCN AQA. The main contribu-
tions of our work are summarized as follows:

1) Addressing the intra-clip confusion problem, we propose
a simple yet effective clip refinement module to correct
the semantic information confusion of each clip.

2) Addressing the inter-clip incoherence problem, we con-
struct a scene graph to capture the local dynamics of
actions by combining several consecutive shots into a
scene and propose an action aggregation operation to
obtain the video-level representation.

3) The proposed hierarchical GCN can be used as a plug-
and-play module for other methods. Extensive experi-
ments on three AQA datasets demonstrate our method
outperforms the state-of-the-art.

The rest of the whole paper is organized as follows: Sec-
tion II briefly reviews the related work, Section III details
the core components of the proposed method, Section IV
shows quantitative and qualitative experiments, and Section V
concludes the whole paper.

II. RELATED WORK

This section first introduces some classical frameworks for
AQA, and then reviews the video representation learning meth-
ods and structured video analysis technology, respectively.

A. Action Quality Assessment

AQA can date back to 1995 by Gordon [26], aiming at
producing scores or ranks as output based on the analysis of a
given input video instance. We divide existing AQA methods
into pose-based methods and vision-based methods according
to different input types.

Early pose-based AQA frameworks [26], [4] consist of
three stages: location tracking, feature extraction, and score
prediction. Through tracking body parts such as hands, feet,
and waist, features such as position, speed, and direction
can be extracted. The action quality score or grade is finally
calculated by manually designed rules or machine learning
methods. For example, Pirsiavash et al. [4] have first estimated
poses of athletes and then encoded them using discrete cosine
transform. Finally, a support vector regression model is used
to map these pose-based features to action quality scores. Due
to illumination, view changes, occlusion, etc, the obtained
pose parameters are not accurate enough [15], which severely
affects the action assessment performance and limits the spread
of applications. With the rapid development of computer vi-
sion, complex actions can be efficiently modeled and evaluated
in detail. Similar to early frameworks, we also break vision-
based ones into three phases: feature extraction, aggregation,
and score regression.

https://github.com/ZhouKanglei/HGCN_AQA
https://github.com/ZhouKanglei/HGCN_AQA
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In terms of the input format, these frameworks include
exemplar-based [3], [12], [7] and exemplar-free [4], [11],
[15] methods depending on whether exemplars are used or
not. The former usually involves selecting a set of reference
exemplars along with the target example as input, while the
latter does not. For example, Yu et al. [12] have proposed
a novel exemplar-based method for AQA using group-aware
contrastive regression. This method can improve the perfor-
mance to a certain extent by regressing relative action quality
scores. However, manual exemplars selection brings personal
bias and the feature learning of exemplars requires an extra
computational burden. To avoid such a problem, the proposed
method falls into the latter.

In terms of the output format [27], there are quality score
regression [11], grading [28], [3], and pairwise-sorting [29],
[13], [30] methods. For the quality score regression methods, a
specific score of an action is predicted, while the grading ones
divide the action quality into different levels. For example,
Parmar et al. [28] classify the levels of cerebral palsy rehabil-
itation exercises as good or bad. The pairwise sorting methods
take any two videos to evaluate the action quality. For example,
Doughty et al. [14] have trained temporal attention modules
using a novel rank-aware loss function. This work outputs
quality scores and adopts rank coefficients for evaluation.

B. Video Representation Learning

The human action analysis is closely related to video rep-
resentation learning, which provides spatial-temporal features
for downstream tasks, such as regression and classification.
We mainly review early and deep learning-based methods for
video representation.

Early methods describe the video by extracting the feature
of key points, represented by space-time interest points [31],
dense trajectories [32], [33], etc. These descriptors are then
aggregated into the video-level representation using encoding
methods like BoW and Fisher vector. These methods cannot
fully extract discriminative representative features from the
video, so it is difficult to capture subtle differences between
actions from the same class for AQA. This is one of the main
reasons that AQA is slow to develop in the early phase.

Deep learning-based methods have achieved better perfor-
mance in video representation learning than the early ones.
There are clip-level [34], [35] and video-level [36] represen-
tation forms based on deep learning-based methods. One of the
most common and effective spatial-temporal feature extractors
is 3D CNNs. However, due to their memory and compu-
tationally intensive nature, current 3D CNNs, such as C3D
[21] and I3D [6], are not suitable for processing long videos
including over 100 frames. Different from action recognition
which can be performed by seeing as little evidence as some
key video frames, accessing the quality of action requires
processing a full action sequence [19]. Therefore, almost
all AQA approaches have built clip-level features instead of
video-level representation. For example, to extract spatial-
temporal features, Pan et al. [37] have uniformly sampled
16 frames in each sequence as the input to the I3D network.
This uniform sampling is first presented in [38] for video-level

representation learning. However, such a trade-off strategy
suffers from the intra-clip confusion problem. In this work, we
devise a novel clip refinement module to handle this problem.

C. Structured Video Analysis

Since the raw video is the unstructured data stream, efficient
analysis and access is not easy task. The structured video anal-
ysis [39] describes videos with a hierarchical structure, which
provides convenience for content-based video processing [25].

The hierarchical video structure consists of shots, groups,
and scenes. A shot contains several consecutive frames cap-
tured once by the camera. Similar shots can be grouped into
one group. Semantically related shots can be merged into
one meaningful scene, which depicts and conveys a high-
level concept. Generally, shots can be divided from the whole
video sequence by shot boundary detection methods [40], [24];
major visual content of shots can be represented by key-frames
[41]. Previous work [24] has shown that high-level features are
powerful and suitable to distinguish transitions. In this work,
we regard the shot as the basic motion unit and different
shots are complete and dependent, such as the high-level
semantic groups of jumping and running, composed of fine-
grained motion primitives. The scene represents a meaningful
procedure and a scene may include several shots, such as that
of take-off, flight, etc. Based on the hierarchical structure of
the video, Wang et al. [42] have developed a method for
automatically dividing complex activities into sub-activities
within a specific video, achieving excellent performance in the
classification of complex activities. Different from this latent
hierarchical model using SVM for action classification, we
design a deep hierarchical model using GCNs for AQA based
on the video hierarchy.

III. THE HIERARCHICAL GRAPH CONVOLUTIONAL
NETWORK

In this section, we start with the clip feature extraction in
Section III-A. Then to handle the intra-clip confusion and
inter-clip incoherence issues, we introduce our hierarchical
GCN with three basic modules to obtain the enhanced video-
level representation: (a) clip refinement, (b) scene construction,
and (c) action aggregation. The clip refinement module (Sec-
tion III-B) aims to correct the semantic information confusion
caused by the uniform clip division before training; the scene
construction module (Section III-C) aims to obtain the refined
clips and construct the scene graph by combining several con-
secutive clips into one scene; the action aggregation module
(Section III-D) aims to obtain the video-level representation. In
Section III-E and Section III-F, we present the score distribu-
tion regression module and the loss function respectively. The
overview of the proposed framework is shown in Figure 2.
Unless otherwise specified in this paper, the normal bold
symbol indicates a matrix or tensor, the italic bold symbol
indicates a vector, the italic-only symbol indicates a variable,
and the normal symbol indicates a constant.
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Fig. 2. The framework of the proposed hierarchical GCN for AQA: an input video sample F with T frames from the AQA dataset is first taken. Then, F
is divided into N clips F1,F2, · · · ,FN by the uniform clip division strategy. Through a weight-sharing I3D backbone network [6], F1,F2, · · · ,FN are
encoded into high-level clip features f1,f2, · · · ,fN . To address the intra-clip confusion problem, f1,f2, · · · ,fN are refined to obtain the shot features
s1, s2, · · · , sS by (a) clip refinement. To address the inter-clip incoherence problem, the (b) scene construction module is performed by reducing several
shots into one scene. Next, the (c) action aggregation module is used to aggregate the video-level representation. Finally, the final score ŝ is predicted by the
score distribution regression network.

A. Clip Feature Extraction

As can be seen in Figure 2, the input of the system is a
video from an AQA dataset. For a video with T frames, we
denote it as F = {X1,X2, · · · ,XT } and its t-th frame of size
W × H can be represented as a tensor Xt ∈ RW×H×3. We
divide the whole video sequence F into N clips spanning
16 frames each, which are denoted as F1,F2, · · · ,FN , in
accordance with the majority of earlier efforts [11], [12], [38].
Through a weight-sharing I3D backbone network [6], these
clips F1,F2, · · · ,FN are separately encoded into the high-
level clip features f1,f2, · · · ,fN ∈ RC1 where C1 represents
the feature dimension. The encoded clip features are combined
to the matrix F ∈ RN×C1 .

B. Clip Refinement

The clip refinement module aims to correct the semantics
information confusion of the clip features f1,f2, · · · ,fN , i.e.,
moving redundant information from a clip to the correspond-
ing incomplete clip. There are two possible scenarios:

• The semantic information contained by the i-th clip is
insufficient to represent one motion, and the necessary
part must be acquired from the ending of its precursors
or the beginning of its successors;

• The semantic information contained by the i-th clip
belongs to more than one motion, and the unnecessary
part must be sent to the ending of its precursors or the
beginning of its successors.

1) Analysis: We argue that the feature of one action can
be represented as the combination of a group of orthogonal
motion primitives b1, b2, · · · , bB ∈ RD1 where D1 is the
embedding dimension. In this work, shots are defined as
dependent and complete individuals in terms of semantic
information, containing only one complete motion primitive.
By contrast, different clips may share motion primitives due
to semantic information confusion. To eliminate the intra-clip
information confusion problem, we first detect transitions by

motion decomposition and then transfer information from one
shot with redundant primitives to another shot with insufficient
primitives. Our method implicitly explores the relationships
between different shots, which is different from the shot
boundary detection [24] that requires finding boundaries be-
tween different shots. The network architecture of the clip
refinement module is depicted in Figure 3, which consists of
three steps: motion decomposition, motion graph construction,
and information transfer. The following provides a detailed
introduction to them.

2) Motion Decomposition: Based on the above analysis,
we decompose the i-th clip feature fi into the superposition
of different motion primitives in a latent manifold space. This
process can be logically represented as: mi = λ1

i b1+λ2
i b2+

· · ·+λB
i bB , where mi is the combination of motion primitives

and λ1
i , λ

2
i , · · · , λB

i are component coefficients. Because our
goal is to indirectly explore the relationship between different
clips with the help of motion decomposition, we do not need
to explicitly obtain motion primitives. Instead, we can model
it by neural networks easily, which can be implemented by:

mi = ReLU (Conv1Dgroup (fi, g)) , (1)

where Conv1Dgroup(·) denotes the 1D convolution layer with
groups of size g and kernels of size 1, and ReLU(·) represents
the rectified linear unit activation function. The ReLU activa-
tion function is chosen over logistic activation functions (e.g.,
softmax) due to its robustness to vanishing gradients and its
computational efficiency.

In this way, it is convenient to determine the direction
and the magnitude of information transfer by comparing the
corresponding primitives within any two clips.

3) Motion Graph Construction: To facilitate information
transfer, we construct a motion graph as Gmot = (Vmot, Emot),
including |Vmot| motion nodes and |Emot| links. The motion
graph Gmot is a direct graph and Amot ∈ RN×N is the
corresponding adjacent matrix.
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Fig. 3. The network architecture of the clip refinement module: the clip
feature F is refined to the corresponding shot feature S through motion
decomposition, motion graph construction, and information transfer.

As shown in Figure 2, one clip may contain information of
several shots or lack information, thus the information transfer
may occur in r-adjacent clips. In this way, the adjacent matrix
Amot can be represented as:

Aij
mot =

{
1, if |i− j| ≤ r

0, otherwise
, (2)

where Aij
mot controls the connections between the clip features

fi and fj , and r indicates the minimum distance between two
clips with neighboring relationship. In particular, r is set to 1
in Figure 1.

When there is information interference in a certain motion
primitive of two clips, the information corresponding to such
motion primitive needs to be transferred from one clip to
another. Next, we need to identify which clip the information
corresponding to the motion primitive belongs to. In other
words, we need to determine the direction and the magnitude
of information transfer. To this end, we learn a distance
function dij to measure the distance from the i-th primitives
combination to that of the j-th. Accordingly, the learnable
distance dij should maintain both direction and magnitude.

In detail, the direction sign(dij) measures whether fj con-
tains the motion primitive that belongs to fi and the magnitude
|dij | weighs the amount of transferred information. To measure
the distance between the motion features mi and mj , we
map mi and mj simultaneously from the feature space to
the metric space using a weight-sharing 1D convolution with
kernel size 1 shown in Figure 3. Next, we calculate the distance
direction and magnitude between mi and mj by a non-linear
transformation. Thus, the process can be represented as:

dij = tanh ((mi −mj)Wmot) , (3)

where Wmot ∈ RD1×1 represents a linear transformation
matrix and tanh(·) denotes the hyperbolic tangent activation
function.

The element dij ranges from −1 to 1, which controls
both the direction and the magnitude of information transfer
between adjacent clips.

• If dij > 0, the clip feature fi need to receive |dij |
information from the clip feature fj . This case means
that the transition boundary between the shot i and j
locates in the i-th clip.

• If dij = 0, the clip feature fi does not need to receive
information from the clip feature fj . This case means
that the transition boundary between the shot i and j is
exact.

• If dij < 0, the clip feature fj need to be removed |dij |
information of the clip feature fj . This case means that
the transition boundary between the shot i and j locates
in the j-th clip.

4) Information Transfer: After we get the information
transfer relationship of different clips, we can correct the
information confusion accordingly. In this work, we implement
the information transfer process between two adjacent clip
features fi and fj by a GCN layer:

si = ReLU

fiWtra +
∑
j∈Ni

Bij
motfjUtra

 , (4)

where Bij
mot = Aij

mot · dij , Wtra,Utra ∈ RC1×C2 are linear
transformation matrices, Ni is neighbors of fi, si ∈ RC2 is
the refined clip (shots) features, and C2 is the dimension of
shot features.

Through the information transfer process, the inter-clip
confusion is corrected and we can obtain the corresponding
shot features s1, s2, · · · , sN . These shots are dependent and
complete in terms of semantic information, which represent
the basic units of action procedures.

5) Sequential Property: Previous works [43], [44], [45]
have shown that an encoder is an effective mapping from the
raw data space to a motion manifold. As a spatial-temporal
feature extractor, I3D can be seen as a manifold projection.
However, separate clip encoding cannot preserve the sequential
property. That is, the distance between adjacent clip features is
small, while the distance between non-adjacent clips is large.
Different from Laplace regularization methods [46], [47] that
consider spatial or temporal closeness, solving this problem
requires clip-level closeness:

O =min
h

N∑
i=1

N∑
j=1

Aij
mot∥hi − hj∥22

=min
H

tr
(
HLH⊤) , (5)

where hi ∈ RC2 represents the embedding of the clip feature
fi, H ∈ RN×C2 denotes the matrix format of h1,h2, · · · ,hN ,
and L ∈ RN×N indicates the Laplace matrix of Amot.

Theorem 1: When H = FW, the propagation process
of GCNs is equivalent to optimizing the above clip-level
regularization in Equation (5).

Proof 1: Set derivative of the objective function in Equa-
tion (5) w.r.t. H to zero, and then we can obtain

∂tr
(
HLH⊤)
∂H

= 0 ⇒ LH = 0 ⇒ H = ÂH. (6)

where Â is the normalized adjacent matrix.
The above equation can be explained as a limit distribution

[48], and we use the following iterative form to approximate
the limit of H with l → ∞:

lim
l→∞

H(l) = ÂH(l−1). (7)
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When the initial representation H(0) is initialized as FW, we
can obtain:

H(l) = ÂH(l−1) = · · · = ÂlH(0) = ÂlXW, (8)

which matches the matrix form of GCNs by ignoring the non-
linear transformation.

In conclusion, Theorem 1 can be proved.
Since the information transfer in Equation (4) also adopts

a GCN layer, the conclusion of Theorem 1 can hold for it.
Therefore, the clip refinement can simultaneously preserve the
sequential nature between different clips so that we do not
need to add additional penalties.

C. Scene Construction

The scene construction module aims to combine several
consecutive shots into a meaningful scene to address the inter-
clip incoherence problem.

1) Analysis: A meaningful scene represents a crucial pro-
cedure and thus is key to evaluating the performance of local
action details. For example, the diving action is usually filmed
in a similar environment and all the videos contain the same
set of action procedures, including take-off, flight, and entry.
The subtle differences mainly appear in the numbers of both
somersault and twist, flight positions as well as their executed
qualities. To capture these subtle differences for AQA, it
is vital to parse the procedures of actions and quantify the
executed qualities of these procedures. Through the scene
construction module, we can capture the full dynamics of
each action procedure, which is beneficial to assess action
details and is key to the final score. The network architecture
of the scene construction module is depicted in Figure 4,
which consists of three steps: shot graph construction, shot
graph aggregation, and shot reduction. The following provides
a detailed introduction to them.

2) Shot Graph Construction: To model shot relationships
within the scene, we construct a shot graph as Gsht =
(Vsht, Esht), including |Vsht| shot nodes and |Esht| connections.
The shot graph G is an undirected graph and Asht ∈ RN×N

is the adjacent matrix.
Different from the motion graph in Section III-B that

focuses on the difference between clips, the shot graph aims
to explore the similarity of shots within scenes. Since several
consecutive shots constitute a meaningful scene, we first
set a neighborhood of size K for each shot to dredge the

information flow between different shots within a single scene.
Thus, the adjacent matrix Asht can be calculated by:

Aij
sht =

{
1, if |i− j| ≤ K

0, otherwise
, (9)

where the element Aij
sht controls the connections between the

shot features si and sj .
We argue that the connection magnitude of different shots

in the same scene is stronger than that of different scenes.
However, only the static graph Asht cannot achieve this. In
addition, we do not know exactly how many neighbors each
shot has and different shots may have different numbers of
neighbors. To make the topology more adaptive, we acquire
the learnable adjacent matrix by using the self-attention mech-
anism [49]. The process can be represented as:

Bij
sht = softmax

(
(siW1) · (sjW2)

⊤
√
D2

)
, (10)

where W1,W2 ∈ RC2×D2 denote linear transformation
matrices, D2 is the embedding dimension, and softmax(·)
represents the normalized exponential activation function. The
element Bij

sht measures the connection magnitude between the
shot features si and sj .

3) Shot Graph Aggregation: In this work, the shot graph
aggregation operation can be also implemented by a basic
GCN layer:

s′i = ReLU

siWsht +
∑
j∈Ni

Aij
adpsjUsht

 , (11)

where Wtra,Utra ∈ RC2×C3 denote linear transformation
matrices, s′i ∈ RC3 represents the i-th updated feature, and
C3 is the dimension size of the updated feature. In this work,
we set the adaptive weight Aij

sht as Aij
sht⊙Bij

sht or Aij
sht+Bij

sht

to explore the optimal way.
4) Shot Reduction: Though different actions in the same

class have the same procedures, each procedure for different
samples contains different shots. The recognition of such
subtle differences is important and challenging for AQA.

To address the above challenge, we adopt a differential
graph transformation mechanism to generate the transforma-
tion matrix T ∈ RN×S by learning a direct mapping from N
shots to S scenes using a GCN layer:

T = softmax

 N⊕
i=1

Aij
adp

N∑
j=1

s′jWtft

 , (12)

where ⊕ denotes the concatenation operation and Wtft ∈
RC×S indicates the linear transformation matrix. Then, we
can get scenes by:

E = S′T, (13)

where E ∈ RS×C3 represents the scene matrix with S scenes
e1, e2, · · · , eS and S′ ∈ RN×C3 denotes the feature matrix
composed of the updated shot features s′1, s

′
2, · · · , s′S .
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Fig. 5. The network architecture of the action graph aggregation module:
the scene feature E is encoded to the video-level representation E′ through
action graph aggregation.

D. Action Aggregation

The action aggregation aims at capturing the global dynam-
ics of an action, which reflects the comprehensive execution
qualities of all procedures and is critical for the final score.

1) Analysis: Considering the successive nature between
different scenes, the action information of the former scene
can only be transmitted to its latter scenes, while the latter
cannot. Identifying such property is important for AQA, as
any change in the action procedures will affect the final
score. Therefore, we need to explore the dependencies between
different action procedures and aggregate them to obtain the
video-level representation for score distribution regression.
The network architecture of the action aggregation module
is depicted in Figure 5, which consists of two steps: scene
graph construction, and video-level aggregation. The following
provides a detailed introduction to them.

2) Scene Graph Construction: To explore dependencies be-
tween action procedures, we construct a scene graph as Gsce =
(Vsce, Esce), including |Vsce| nodes and |Esce| connections. The
scene graph Gsce is a direct graph and Asce ∈ RN×N is the
adjacent matrix.

The successive nature of actions controls the flow of infor-
mation from front to back, so the adjacent matrix Asce can be
calculated by:

Aij
sce =

{
1, if i− j > 0

0, otherwise
, (14)

where Aij
sce controls connections between two scenes. Similar

to the shot graph construction in Section III-C, we need to
learn an adaptive weight Bij

sce for modeling the relationships
and the adaptive connection magnitude between different
scenes, which can be calculated by:

Bij
sce = softmax

(
(eiU1) · (ejU2)

⊤
√
D3

)
, (15)

where U1,U2 ∈ RC3×D3 denote linear transformation matri-
ces, and D3 is the embedding dimension.

3) Video-level Aggregation: We need to aggregate discrim-
inative features to recognize the subtle differences between
different actions for score regression. Different from time-

consuming LSTMs, we implement action aggregation by the
efficient GCN layer:

e′i = ReLU

eiWact +
∑
j∈Ni

(
Aij

sce ·Bij
sce

)
ejUact

 , (16)

where Wact,Uact ∈ RC3×C4 denote linear transformation
matrices, e′i ∈ RC4 is the corresponding updated feature
of ei, and C4 is the dimension of updated features. The
enhanced scene feature e′S is regarded as the final video-level
representation v ∈ RC4 for the score regression operation.

E. Score Distribution Regression

The score distribution regression module aims to predict the
score distribution instead of directly regressing the final score,
so that we can attend to the intrinsic ambiguity in the score
labels caused by multiple judges or their subjective appraisals,
thus improving the scoring performance.

Regarding AQA as a regression problem ignores the intrin-
sic ambiguity in the score labels caused by multiple judges or
their subjective appraisals. The uncertainty-aware score distri-
bution learning [11], [16] is usually used to address the above
problem, and their main idea is to learn a score distribution
that can automatically generate distinguishable variances for
two different actions. Therefore, similar to the previous work
[16], the action score in this paper is also represented as a
random variable. Then, we need to learn its corresponding
score distribution, which indicates the probability of different
evaluated scores. Finally, the predicted score is sampled from
the learned distribution.

For the video-level feature v, a probabilistic encoder RC4 →
R is first used to encode v into a random score variable s. The
encoded score random variable s is subject to the Gaussian
distribution, as follows:

p(s;v) =
1√

2πσ2(v)
exp

(
− (s− µ(v))2

2σ2(v)

)
, (17)

where the mean parameter µ and variance parameter σ2 w.r.t.
the feature representation v are used to quantify the quality
and uncertainty of the action score, respectively. The re-
parameterization trick [50] is then applied to the sample from
the distribution to output the predicted score.

As illustrated in Figure 2, we do not directly sample from
the score distribution, but the first sample from another random
variable ϵ, which is distributed in the standard normal distri-
bution N (0, 1). In this way, the score distribution sampling
process is differentiable to ensure that the encoder training is
feasible. Then, the predicted score ŝ is calculated according to
the independently sampled random variable ϵ, mean parameter
µ(v) and variance parameter σ2(v) of the output.

ŝ = µ(v) + ϵ · σ(v), (18)

where the parameter σ(·) represents the standard variance. In
this way, the score distribution sampling process is differen-
tiable to ensure that the encoder training is feasible.
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F. Loss Function

In this work, we use the MSE loss to supervise the score
distribution regression.

LMSE =
1

N

N∑
i=1

(si − ŝi)
2
. (19)

where ŝi and si are denoted as the predicted score and the
ground-truth score of the i-th sample, respectively. The MSE
loss controls the training process directly so that we can
progress toward convergence during the training procedure.

IV. EXPERIMENTS

In this section, we briefly introduce the experimental setup,
including datasets, evaluation metrics, and implementation
details. Next, we present extensive qualitative and quantitative
experiments and analyze the results of these experiments.

A. Datasets

We evaluate the performance of the proposed method on
three public quality assessment datasets in the sports domain.

AQA-7 [18] contains a total of 1,189 samples from seven
different actions, which are collected from winter and summer
Olympic games. It is made of seven datasets, including single
diving-10m platform (370 samples, previously released as
NLV-Dive [22]), gymnastic vault (176 samples, previously
released as UNLV-Vault [22]), big air skiing (175 samples),
big air snowboarding (206 samples), synchronous diving-
3m springboard (88 samples), and synchronous diving-10m
platform (91 samples).

MTL-AQA [19] is the currently largest dataset for AQA. It
contains the diving action with 1,412 samples including both
male and female, both individual and synchronous divers, both
3m springboard and 10m platform, and different views. The
various annotations consist of the degree of difficulty (DD),
scores from 7 judges, the action type of the diver, and the final
score. We adopt the evaluation protocol suggested in [19] in
our experiments.

JIGSAWS [20] is a surgical action dataset that contains 3
types of the surgical task: Suture (S), NeedlePassing (NP), and
Knotted (KT). For each task, each video sample is annotated
with multiple annotation scores assessing different aspects of
surgical actions, and the final score is the sum of those sub-
scores. Every action in the dataset is recorded by the left and
right cameras at the same time. We adopt a similar four-fold
cross-validation strategy as previous works [37], [11].

B. Evaluation Metrics

We use two evaluation metrics to validate the performance
of the proposed and other AQA methods.

Similar to previous works [14], [11], [3], we adopt the
Spearman’s rank correlation coefficient ρ to evaluate the
performance of AQA methods. ρ is defined as the Pearson
correlation coefficient between two rank vectors p and q w.r.t.
the predicted and ground-truth scores:

ρ =

∑
i(pi − p̄)(qi − q̄)√∑

i(pi − p̄)2
∑

i(qi − q̄)2
, (20)

where p̄ and q̄ denote the average values of the rank vectors p
and q, respectively. The higher the value of the coefficient ρ,
the higher the rank correlation between the predicted scores
and ground-truth scores.

We also adopt a stricter metric to measure the performance
of AQA models more precisely, which is called the relative
ℓ2 distance (R-ℓ2) [12]. Given the highest and lowest scores
for an action smax and smin, the relative ℓ2 distance R-ℓ2 is
defined as:

R-ℓ2 =
1

N

N∑
n

( |sn − ŝn|
smax − smin

)2

× 100, (21)

where sn and ŝn represent the ground-truth score and predic-
tion for the n-th sample, respectively. Fisher’s z-value is used
to measure the average performance across actions.

C. Implementation Details

We have implemented the proposed hierarchical GCN with
the PyTorch deep learning framework and accelerated the
training process with two NVIDIA RTX 3090 GPUs.

For the AQA-7 and MTL-AQA datasets, we extract 103
frames for each video clip as same as previous works [11],
[12], [19], [37], and then divide them into 10 overlapping
clips, each containing 16 continuous frames. For the JIGSAWS
dataset, we follow the previous work [11] to evenly sample out
160 frames and form 10 non-overlapping 16-frame clips. The
channel numbers C1, C2, C3, C4 are set to 1024, 512, 526, and
128, respectively, and D1 = C1/2, D2 = C2/2, D3 = C3/2.
We adopt the I3D model pre-trained on the Kinetics dataset [6]
as the feature extractor. The learning rate is set to 1e−4 and the
Adam optimizer is adopted with the weight decay 10−4. The
group number g of all convolution and MLP layers is set to 4.
In practice, these hyper-parameters can be slightly adjusted for
different datasets. The maximum number of training epochs is
set to 200.

D. Results and Analysis

Firstly, we show the comparison results of three datasets
with the state-of-the-art AQA methods, respectively. Then, we
qualitatively verify different phases of the proposed method.
Finally, extensive ablation studies are performed to explore the
effectiveness of basic components.

1) Comparisons with the State-of-the-Art: Tables I to III are
comparison results with state-of-the-art methods on the AQA-
7, MTL-AQA, and JIGSAWS datasets, respectively. For exam-
ple, on the MTL-AQA dataset in Table I, both ours with DD
and ours without DD achieve the best assessment performance.
With the DD information, ours achieves a Spearman’s rank
coefficient of 0.9563, which is 0.0170 higher than that of TSA-
Net [15]. Additionally, although the proposed method does not
perform as well as TSA-Net [15] in Gym Vault, BigSnow. and
Sync. 3m of the AQA-7 dataset, it is generally better than that
of TSA-Net [15] from Table II. All of the results in Tables I
to III demonstrate that the proposed method outperforms the
state-of-the-art methods.
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TABLE I
COMPARISONS OF THE SPEARMAN’S COEFFICIENT ρ AND R-ℓ2 DISTANCE

WITH STATE-OF-THE-ART METHODS ON THE MTL-AQA DATASET.

DD Methods ρ R-ℓ2

w/o

Pose + DCT [4] 0.2682 –
C3D-SVR [22] 0.7716 –
C3D-LSTM [22] 0.8489 –
MSCADC-STL [19] 0.8472 –
C3D-AVG-STL [19] 0.8960 –
MSCADC-MTL [19] 0.8612 –
C3D-AVG-MTL [19] 0.9044 –
USDL [11] 0.9066 0.654
MUSDL [11] 0.9158 0.609
I3D + MLP [12] 0.9196 0.465
CoRe [12] 0.9341 0.365
I3D + MLP 0.9301 0.424
Ours 0.9390 0.360

w/

RGR [3] 0.7600 –
USDL [11] 0.9231 0.468
MUSDL [11] 0.9273 0.451
I3D + MLP [12] 0.9381 0.394
CoRe [12] 0.9512 0.260
TSA-Net [15] 0.9393 –
UD-AQA [51] 0.9545 0.259
I3D + MLP 0.9452 0.371
Ours 0.9563 0.235

2) Qualitative and Quantitative Results: Unless otherwise
stated, all qualitative and quantitative experiments are con-
ducted on the MTL-AQA dataset.

Clip refinement: To clearly understand the process of
the clip refinement module, we show the learned heatmaps
and illustrate the information transfer flow on the MTL-AQA
dataset in Figure 6. Figure 6(a) and (b) show heatmaps of
the adjacent matrix Amot before and after the clip refinement
when the neighborhood scope r is equal to 1. Since the
information transfer flow between two clips is directed, we can
see that Amot is a negative symmetric matrix and is subject
to Aij

mot = −Aij
mot. It can be seen from Figure 6(a) and (b)

that the relationships between non-adjacent clips are zero. The
information transfer flow w.r.t. Figure 6(a), is illustrated in
Figure 6(c). For example, d78 = 0.29 means that the 7-th
clip should receive 0.29 amount of information from the 8-th
clip, indicating that the 7-th clip is incomplete; in contrast,
d87 = −0.29 means that the 8-th clip should remove 0.29
amount of information from the 7-th clip, indicating that the
8-th clip is redundant. In Figure 6(b), all the information
transfer strength is lower than 0.1 and can be viewed as
noises, indicating that all of shots are relatively complete and
dependent in terms of semantic information. In other words, it
supports that the proposed clip refinement module is effective
to handle the information confusion problem.

Scene construction: To clearly visualize the scene con-
struction process, Figure 7 illustrates the heatmaps of the
normalized transformation matrix T in Equation (12) when the
scene number S is equal to 3, 5, and 7, respectively, conducted
on the MTL-AQA dataset. Tij indicates the contribution of
the i-th shot to the j-th scene. It can be seen that the 10-
th shot makes the biggest contribution to almost scenes. This
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Fig. 6. The visualization of the clip refinement process: (a) and (b) are the
heatmaps of the distance matrix with the self-connection before and after
clip refinement, respectively; (c) is the diagram of information transfer flow
between different clip features.
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Fig. 7. The visualization of the scene construction process: (a), (b), and (c) are
heatmaps of the normalized transformation matrix when the scene numbers
are equal to 3, 5 and 7, respectively.

is because all the actions in MTL-AQA belong to the diving
class, and the splash of the diver when falling into the water
is usually located in the final shot (the ending of the video)
and is an important clue to score. For example, as can be seen
in Figure 7(b), the contribution of the 10-th shot to the 5-th
scene is 1, indicating that the 10-th shot is considered as part
of the final judging procedure.

Action aggregation: To best view the action aggregation
process, the learned adjacent matrix Asce in Equation (14)
and the corresponding action information aggregation flow
are shown in Figure 8, conducted on the MTL-AQA dataset.
It can be seen from Figure 8(a) that Asce is the adjacent
matrix of a directed graph and the information can only pass
to the current scene from its ahead neighbors. Non-adjacent
relationships can effectively increase the receptive field of
aggregation, which is conducive to the efficient generation
of video-level features. Figure 8(b) shows the corresponding
action information aggregation flow. For example, it can be
seen that the final scene aggregates information from all the
ahead scenes with equal weights, indicating that all action
procedures contribute equally to the final scoring.

Predicted score distribution: The score error histogram
of serr = |ŝ−s| on the MTL-AQA test set is shown in Figure 9,
where blue, orange, and green bars are errors of I3D + MLP
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TABLE II
COMPARISONS OF THE SPEARMAN’S COEFFICIENT ρ AND R-ℓ2 DISTANCE WITH STATE-OF-THE-ART METHODS ON THE AQA-7 DATASET.

Metrics Methods Diving Gym Vault BigSki. BigSnow. Sync. 3m Sync. 10m Avg.

ρ

Pose + DCT [4] 0.5300 0.1000 – – – – –
C3D-LSTM [22] 0.6047 0.5636 0.4593 0.5029 0.7912 0.6927 0.6165
C3D-SVR [22] 0.7902 0.6824 0.5209 0.4006 0.5937 0.9120 0.6937
ST-GCN [52] 0.3286 0.5770 0.1681 0.1234 0.6600 0.6483 0.4433
JRG [37] 0.7630 0.7358 0.6006 0.5405 0.9013 0.9254 0.7849
USDL [11] 0.8099 0.7570 0.6538 0.7109 0.9166 0.8878 0.8102
I3D + MLP [12] 0.8685 0.6939 0.5391 0.5180 0.8782 0.8486 0.7601
CoRe [12] 0.8824 0.7746 0.7115 0.6624 0.9442 0.9078 0.8401
TSA-Net [15] 0.8379 0.8004 0.6657 0.6962 0.9493 0.9334 0.8476
UD-AQA [51] 0.8532 0.7663 0.6836 0.5596 0.9281 0.9438 0.8318
Ours 0.8867 0.7917 0.7326 0.6447 0.9213 0.9424 0.8501

R-ℓ2

C3D-SVR [22] 1.53 3.12 6.79 7.03 17.84 4.83 6.86
USDL [11] 0.79 2.09 4.82 4.94 0.65 2.14 2.57
I3D + MLP [12] 0.81 2.54 6.06 5.31 1.41 3.08 3.20
CoRe [12] 0.64 1.78 3.67 3.87 0.41 2.35 2.12
Ours 0.59 1.85 3.59 3.61 0.82 1.40 1.98

TABLE III
COMPARISONS OF THE SPEARMAN’S COEFFICIENT ρ AND R-ℓ2 DISTANCE

WITH STATE-OF-THE-ART METHODS ON THE JIGSAWS DATASET.

Metrics Methods S NP KT Avg.

ρ

ST-GCN [52] 0.31 0.39 0.58 0.43
TSN [22] 0.34 0.23 0.72 0.46
JRG [37] 0.36 0.54 0.75 0.57
USDL [11] 0.64 0.63 0.61 0.63
MUSDL [11] 0.71 0.69 0.71 0.70
I3D + MLP [12] 0.61 0.68 0.66 0.65
CoRe [12] 0.84 0.86 0.86 0.85
UD-AQA [51] 0.87 0.93 0.86 0.89
Ours 0.89 0.91 0.90 0.90

R-ℓ2
I3D + MLP [12] 4.795 11.225 6.120 7.373
CoRe [12] 5.055 5.688 2.927 4.556
UD-AQA [51] 3.444 4.076 5.469 4.330
Ours 4.784 3.927 3.380 4.031
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Fig. 8. The visualization of the action aggregation process: (a) denotes
the heatmap of the learned adjacent matrix, and (b) illustrates the action
information aggregation flow.

[16], CoRe [12] and ours, respectively. On the one hand,
According to statistics, 70% and 55% of the sample errors of
ours are less than that of I3D + MLP and CoRe, respectively,
indicating that ours is more accurate than the others. On the
other hand, 77% of the samples using our method have a small
score error of less than 5, while that of CoRe [12] is only 71%.
For example, the first row in Figure 10 shows the #013 sample
and its predicted score distribution using the proposed method.

0 50 100 150 200 250 300 350
# of sample

0

10

20

30

E
rr

or
(|ŝ
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I3D + MLP
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Fig. 9. The histogram of score error |ŝ− s| on the MTL-AQA test set: blue,
orange, and green are error bars of I3D + MLP, CoRe and ours, respectively.

The predicted score is 91.3, which is only 0.1 points off the
ground-truth score of 91.2. The last two rows in Figure 10
show a gym vault sample and a skiing sample on the AQA-7
dataset, where the predicted results are close to their ground-
truth scores.

Additionally, there are three samples whose errors are more
than 20, i.e., the #224, #332, and #340 samples as shown in
Figure 11. For example, for the sample #340, the diver has
attempted to challenge the diving action at difficulty 3.1. It
can be seen from the last row of Figure 11 that the diver
has failed to control the run-up rhythm on the springboard,
failed to complete required movements after taking off, and
splashed heavily after falling into the water. Finally, the action
is judged as a 0 score. However, our model predicts the action
score as 27.5, which is far from the ground-truth score. In
fact, not only does our model perform poorly for this type of
action, but so do the others. At present, we lack an adequate
solution in dealing with extreme cases such as fouls. Thus,
foul detection before AQA will be a research topic worthy of
future investigation.

Evaluation results: To intuitively observe the differences
between the proposed hierarchical GCN and other methods,
we visualize the prediction results on the MTL-AQA dataset
in form of a scatter plot in Figure 12. The blue dashed line
indicates the fitted predictions and the orange line represents
the perfect predictions. The closer the two lines are, the more
accurate the method is. It can be seen that our method is
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Fig. 10. Three successful action samples on the MTL-AQA and AQA-7 dataset and their predicted score distribution using the proposed hierarchical GCN:
the first column to the fourth column denote the 11-st, 31-st, 51-st, and 71-st frames of samples #005 on the MTL-AQA dataset and #332 and #340 on the
AQA-7 dataset, respectively; the final column represents the plot of the corresponding predicted score distribution.

much more accurate than other methods, which has a slope
of 0.9 in Figure 12(d) and is closest to the perfect line.
Without the DD information, the performance can be reduced,
which is consistent with the previous works [12], [16]. This
is mainly due to DD providing additional degree of difficulty
information that is difficult to capture through visual features
alone. For example, the same action is scored differently under
different scoring standards like difficulty.

Furthermore, Figure 13(a) shows the cumulative score
curves of the proposed methods and CoRe [12]. The larger
the area under the curve indicates the better performance.
Given an error threshold value sthr, the absolute differences of
samples between the predicted scores and the corresponding
ground-truth scores that are less than sthr will be regarded
as positive samples. It can be observed that the red curve
marked with the plus sign of the proposed hierarchical GCN
shows a stronger ability to predict accurate scores than others
under almost all the error thresholds. Notably, the parameter
number of the CoRe model is 2.51M, while ours is as low
as 0.41M. The training and testing results of 200 epochs on
the MTL-AQA dataset are shown in Figure 13(b). The sharp
R-ℓ2 reduction proves that the proposed method converges fast
during training. After 50 epochs, the correlation coefficient ρ
changes slowly during testing.

3) Ablation Study: Unless otherwise stated, all of the rele-
vant ablation studies are conducted on the MTL-AQA dataset.

Effectiveness of the DD label: Table IV shows the play-
and-plug results on the baseline and Table V shows the
ablation study of the Spearman’s rank correlation coefficient
ρ and the relative ℓ2 distance R-ℓ2 on the MTL-AQA dataset,
where we use “⋆” to indicate that we use DD in both training
and testing. We choose I3D + MLP [16] as our baseline, which

TABLE IV
PLAY-AND-PLUG COMPONENT RESULTS OF THE SPEARMAN’S RANK

CORRELATION COEFFICIENT ρ AND THE RELATIVE ℓ2 DISTANCE R-ℓ2 ON
THE MTL-AQA DATASET.

Protocols ρ R-ℓ2
I3D + MLP 0.9301 0.424
I3D + MLP w/ DD 0.9452 ↑0.0151 0.371 ↓0.053

I3D + MLP w/ Section III-B 0.9343 ↑0.0042 0.413 ↓0.011

I3D + MLP w/ Section III-C 0.9371 ↑0.0070 0.396 ↓0.028

I3D + MLP w/ Section III-D 0.9364 ↑0.0063 0.409 ↓0.015

TABLE V
COMPONENTS ABLATION RESULTS OF THE SPEARMAN’S RANK

CORRELATION COEFFICIENT ρ AND THE RELATIVE ℓ2 DISTANCE R-ℓ2 ON
THE MTL-AQA DATASET.

Protocols ρ R-ℓ2
Ours⋆ 0.9563 0.235
Ours⋆ w/o DD 0.9390 ↓0.0173 0.361 ↑0.126

Ours⋆ w/o Section III-B 0.9527 ↓0.0036 0.287 ↑0.052

Ours⋆ w/o Section III-C 0.9484 ↓0.0079 0.311 ↑0.076

Ours⋆ w/o Section III-D 0.9507 ↓0.0056 0.291 ↑0.056

achieves the Spearman’s rank coefficient of 0.9301 and the
relative ℓ2 distance R-ℓ2 of 0.424. Notably, it can be seen that
the proposed method with DD achieves the best performance
where the Spearman’s coefficient reaches up to 0.9563 and the
relative R-ℓ2 distance is as low as 0.235. We first verify the
effectiveness of DD on the MTL-AQA dataset. By using the
DD label in the baseline (I3D + MLP), it can be seen that the
performance is improved; by removing the DD label from our
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Fig. 11. Three failed diving action samples with large errors on the MTL-AQA dataset and their predicted score distribution using the proposed hierarchical
GCN: the first column to the fourth column denote the 11-st, 31-st, 51-st, and 71-st frames of the #224, #332, and #340 samples, respectively; the final
column represents the plot of the corresponding predicted score distribution.
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Fig. 12. Scatter plots of correlation for different methods between the ground-
truth score s and the predicted score ŝ: (a) the implemented I3D + MLP
method, (b) the CoRe method [12], and (c) the proposed hierarchical GCN.

approach (ours⋆), the performance is weakened. For example,
the Spearman’s coefficient is reduced by 1.8% and 0.0173 for
ours compared to ours⋆, indicating the effectiveness of the DD
label. When the action is complex, the DD is high. Generally,
as long as the diver completes the difficulty without mistakes,
an innate advantage can be given.

Effectiveness of basic modules: On the one hand, we
separately add the clip refinement module (Section III-B),
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Fig. 13. Plots of (a) the cumulative score curves and (b) the Spearman’s rank
coefficient ρ and the relative ℓ2 distance R-ℓ2.

the scene construction module (Section III-C), and the action
aggregation module (Section III-D) into the baseline in order
to verify their effectiveness. The corresponding results are
reported in Table IV. It can be seen that the baseline perfor-
mance is improved regardless of which module is added. For
example, by adding the scene graph construction module, the
Spearman’s rank coefficient is increased by 0.75% and 0.007;
the relative R-ℓ2 distance is reduced by 0.028. Additionally,
the result in Table IV also shows the play-and-plug advantage
of the proposed method.

On the other hand, we remove one module at a time from
ours⋆ and the corresponding experiment results are shown
in Table V. Similarly, it can be seen that the performance
is reduced by removing any module, indicating that each
proposed module is necessary and functional.

Effectiveness of different neighbors: For the scene con-
struction phase, we first need to perform the shot graph
construction. To explore the effectiveness of the different
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TABLE VI
RESULTS ON THE EFFECTIVENESS OF DIFFERENT NEIGHBORS.

Metrics K = 0 K = 1 K = 2 K = 3 K = 4

ρ 0.9510 0.9541 0.9563 0.9552 0.9522
R-ℓ2 0.281 0.264 0.235 0.273 0.280

TABLE VII
RESULTS ON THE EFFECTIVENESS OF DIFFERENT SCENES.

Metrics S = 3 S = 5 S = 7 S = 9 ⊙
ρ 0.9549 0.9542 0.9563 0.9514 0.9535

R-ℓ2 0.279 0.231 0.235 0.283 0.275

neighbors in Equation (9), we set K with different values
and the experimental results are shown in Table VI. When
K is equal to 0, it means that there is no connection between
different shots, and the performance of the model is poor. The
larger K is, the larger the receptive field is, and the more
efficiently the global information can be aggregated between
different shots. However, it can also be observed that a large
receptive field reduces model performance. This is because the
model cannot pay attention to the local details of the action,
which represents the basic procedure for the judge to give
the score. Equation (9) shows that when K is equal to 2, the
model performs best, indicating that 5 shots can be useful
for capturing local dynamics of the motion dynamics for the
diving action.

Effectiveness of different scenes: We need to determine
how many different scenes we can divide for an action. The
results of different scenes are reported in Table VII. A scene
represents a scoring procedure, and these scoring procedures
are the basic units of scoring. For the diving action, there
are three basic procedures as mentioned above in reality. It
can be seen that the performance is relatively good after the
scene construction. The larger S is, the finer the granularity
of action is and the more accurate the score is. However, a
large number of scenes may inhibit the performance of the
model, e.g., when the number of scenes increases to 9, the
performance deteriorates dramatically. This is because a scene
contains several shots, and as the number of scenes to be
divided increases, there are fewer shots in each scene and the
semantics are incomplete. In terms of the relative ℓ2 distance,
the model performs better when the number of scenes is 5 and
7 than that of 3 and 9.

Effectiveness of the adaptive relationships: To avoid
the negative effect of the static graph topology, we evaluate
the performance of different adaptive strategies as stated in
Equation (11). Table VII reports the corresponding results.
The final column shows the element-wise strategy when S
is equal to 7 and the others are that of the additive strategy.
This element-wise strategy Aij

sht⊙Bij
sht preserves the manually

defined relationships where local neighbor relationship plays
a major role, while the additive operation Aij

sht +Bij
sht allows

the network to learn potential connections and capture global
dynamics of actions. The experimental results in Table VII
show that the additive is much more effective than that of the

TABLE VIII
RESULTS ON THE EFFECTIVENESS OF DIFFERENT GROUPS.

Group Number ρ R-ℓ2 Param. GFLOPs

g = 1 0.9531 0.258 1.2500M 0.0123
g = 2 0.9538 0.251 0.6935M 0.0068
g = 4 0.9563 0.235 0.4149M 0.0041
g = 8 0.9564 0.247 0.2757M 0.0027

element-wise one, indicating that undefined relationships also
have the potential to improve AQA performance.

Effectiveness of different groups: As shown in
Equation (1), we use the group convolution to promote
the computational performance for AQA. To explore
the effectiveness of different groups, we have conducted
experiments on the MTL-AQA dataset and the corresponding
results are shown in Table VIII. It can be seen from Table VIII
that with the increase of the number of groups, the number
of parameters and computation (GFLOPs) of the model
are reduced. For example, when the number of groups is
equal to 1, the computation is 0.0123 GFLOPs, and when
the number of groups is 8, the calculation is only 0.0027
GFLOPs. Notably, the performance of g = 8 is slightly
better than that of g = 1. We have also noted that when
the number of groups is 8, the Spearman’s rank coefficient
ρ is the largest, almost equal to that of 4, but the relative
distance R-ℓ2 is much larger than the number of groups is
4. This indicates that when the number of groups is greater
than 4, the performance of the model is unstable and tends
to decline. To balance the performance of the model with the
computational overhead, we finally set the number of groups
as 4 for the other experiments.

V. DISCUSSION AND CONCLUSION

This paper presents a hierarchical method using GCNs for
AQA to address intra-clip confusion and inter-clip incoherence
issues. To tackle semantic confusion, a clip refinement module
is designed, which serves as a strong foundation for further
hierarchical action analysis. Then, the shot reduction is used
to detect meaningful scenes and score action in detail. The
action aggregation module aggregates video-level representa-
tion, which enables better score distribution regression and
improves the scoring performance among scenes. Experiments
on AQA-7, MTL-AQA, and JIGSAWS prove that the proposed
method outperforms the state-of-the-art.

Our hierarchical AQA network consists of four stages: fea-
ture extraction, clip refinement, scene construction, and action
aggregation. The main difference between scene construction
and action aggregation lies in the level of aggregation. While
combining scene construction and action aggregation could
provide a more comprehensive representation of the action and
improve performance, it also has potential drawbacks such as
increased model complexity and the need for careful design
choices. Furthermore, the combined stage may require more
data to achieve good generalization performance. In addition
to scoring accuracy, real-time performance is also crucial for
practical applications. Therefore, we have disentangled the
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process into two stages to balance accuracy and efficiency.
Further research is needed to determine the optimal design
of an AQA system that combines the two stages, considering
factors such as data availability, computational resources, and
interpretability.

Despite the effectiveness of our approach in addressing
the intra-clip confusion and inter-clip incoherence problem
in AQA, there are s some limitations that need to be ad-
dressed in future research. Firstly, we acknowledge that our
vision-based approach may not be able to effectively deal
with chaotic environments characterized by large amounts
of interference, such as background crowd interference. To
mitigate the effects of background interference, we plan to
explore data pre-processing operations such as denoising and
contrast enhancement [53], [54], [55] to improve the accuracy
of pose estimation. Additionally, we plan to leverage multi-
modality inputs, incorporating both pose and visual infor-
mation, to enhance the discriminative power of our model’s
features. Secondly, we recognize that our model may struggle
to understand complex and rich semantics between entities
due to implicit semantics mining. To address this limitation,
we plan to investigate the use of action segmentation methods
and attention mechanisms in combination with a hierarchical
graph convolutional block to uncover the semantic relation-
ships between action procedures. Lastly, we acknowledge the
difficulty in accurately assessing the quality of extreme sports
activities, such as fouls, which could limit the performance of
the assessment. To overcome this limitation, we plan to explore
the detection of foul actions before AQA to improve the
assessment performance further. These limitations highlight
the need for further research to improve the robustness and
accuracy of AQA models in complex environments. We be-
lieve that addressing these limitations will enable our model to
perform better in challenging scenarios, and we look forward
to exploring these avenues of research in the future.
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