
Neural Processing Letters
https://doi.org/10.1007/s11063-022-10870-1

TSVMPath: Fast Regularization Parameter Tuning Algorithm
for Twin Support Vector Machine

Kanglei Zhou1 ·Qiyang Zhang2 · Juntao Li3

Accepted: 29 April 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Twin support vector machine (TSVM) has attracted much attention in the field of machine
learning with good generalization ability and computational performance. However, the
conventional grid search method is very time-consuming to obtain the optimal regulariza-
tion parameter. To address this problem, we develop a novel fast regularization parameter
tuning algorithm for TSVM, named TSVMPath. After transforming the models of two sub-
optimization problems, we divide the two classes of samples into different sets. Lagrangian
multipliers are then proved to be piecewise linear concerning the corresponding regular-
ization parameters, greatly extending the search space of the solution. By proving that the
Lagrangian multipliers of two sub-optimization models are 1 when the regularization param-
eters approach infinity, we design a simple yet effective initialization. As a result, the entirely
regularized solution path can be obtained without solving quadratic programming problems.
Four types of events are finally defined to update the solution path. Experiments on 8 UCI
datasets show that the prediction accuracy of TSVMPath is superior to the best compet-
ing methods, with up to four orders of magnitude speed-up for the computational overhead
compared with the grid search method.
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1 Introduction

Although deep learning is hot in recent years, machine learning algorithms [1–3] such as
support vector machine (SVM) [4] are still not negligible due to their solid theoretical sup-
port and strong interpretability. SVM was born in 1964 and developed rapidly in the 1990s.
Since then, a series of improved extensions have emerged, among which twin SVM (TSVM)
[5] is one of the most powerful variants. TSVM has achieved brilliant achievements in many
applications [6–8]. However, obtaining the optimal regularization parameter for TSVM is
challenging. Therefore, it is vital to develop an efficient solution path algorithm of regular-
ization parameters for improving the performance of TSVM.

In the field of machine learning, most algorithms essentially pre-define one or more
parameters to solve quadratic programming problems (QPPs), dubbed parameter quadratic
programming (PQP) [9]. Parameters in a PQPproblemare typically tuned by cross-validation.
TSVM requires multiple training under different parameter settings, so it is hard to explore
the optimal parameter extensively. In practice, TSVM usually depends on training many
times by the traditional grid search method to determine the optimal hyperparameter. How-
ever, especially for multi-parameter adjustment problems, it is computationally expensive
and unworkable. To address this problem, researchers have proposed some fast parameter
tuning methods [10–12].

Compared with SVM, TSVM solves two small-scale QPPs instead of a large one. The
method alleviates the stability problem of SVM in solving large-scale high-dimensional data
but increases the difficulty of designing the entirely regularized solution path algorithm of
TSVM. Therefore, the entirely regularized solution path algorithm of SVM [10] has been
proposed as early as 2004, while TSVM has not been fully solved yet. Several attempts [11,
12] have been made since TSVM was born. However, they will inhibit the performance of
the algorithm itself to some extent and cannot fully explore the entirely regularized solution
path. Unlike the previous works [11, 12], we develop an entirely regularized solution path
algorithm by strengthening the role of regularization.

Aiming at solving the PQP problem for TSVM, this paper develops a novel entirely reg-
ularized solution path for TSVM, i.e., TSVMPath,1 including four steps: (1) We first adopt
a simple yet effective sample partition strategy after model transformation. (2) Lagrangian
multipliers in twoQPPs ofTSVMare piecewise linearw.r.t. regularization parameters accord-
ingly. (3) An efficient initialization is designedwithout solvingQPPs. (4) Four types of events
are defined to seek breaks points of the regularized path. TSVMPath has reduced the compu-
tational overhead of parameter adjustment compared with the traditional grid search method.
Experiments on 8 UCI datasets verify that both the prediction accuracy and the training
efficiency are superior to the baselines.

The main contributions of this work are summarized as:

• Lagrangian multipliers of two sub-optimization problems are proved to be piecewise
linear w.r.t. regularization parameters, ensuring only solving the breakpoints of regular-
ization parameters to obtain the entirely regularized solution path.

• Lagrangian multipliers are proved to be 1 when the regularization parameter approaches
infinity. And we design a simple yet effective initialization process, so that the entirely
regularized solution path can be obtained without solving QPPs.

• The fast regularization parameter tuning algorithm for TSVM is proposed, which largely
reduces the computational overhead of parameters tuning and greatly extends the solution
space of regularization parameters to (0,+∞).

1 Code will be available at https://github.com/ZhouKanglei/TSVMPath.
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The organization of the rest paper is as follows: Sect. 2 reviews the related work, Sect. 3
dwells the basic concepts of TSVM and proposes the sample partition strategy, Sect. 4
proves that Lagrangian multipliers are piecewise linear w.r.t. the regularization parameters
accordingly, Sect. 5 initializes the two sub-optimization problems by proving Lagrangian
multipliers to be 1 as the regularization parameters approach infinity, Sect. 6 designs the
entirely regularized solution path algorithm of TSVM in detail, Sect. 7 gives the experimental
results and verifies the effectiveness of the algorithm, and Sect. 8 concludes the whole paper.

2 RelatedWork

In this section, we first review different SVM extensions and then introduce parameter tuning
methods.

SVM As awell-known statistical machine learningmethod, SVM [4] is first proposed byVap-
nik et al., based on the principle of structured risk minimization and Vapnik-Chervonenkis
dimension theory. SVM trains samples by solving a convexQPP and constructing a classifica-
tion hyperplane tomaximize the classificationmargin. Due to its good predictive performance
and powerful generalization ability, SVM has been developed into a wide range of applica-
tions in solving many practical problems such as text classification [13–15], time series
analysis [16–18] and face recognition [19–21]. However, with the unstoppable development
of the Internet and information technology, a large amount of high-dimensional, distributed
and dynamic complex data are generated increasingly, leading to unprecedented difficulties
for SVM in processing these complicated data.

TSVM To improve the prediction accuracy and computational efficiency, Jayadeva et al. pro-
posed TSVM [5] based on standard SVM. Unlike SVM, TSVM constructs two non-parallel
hyperplanes by solving two small-scale QPPs and makes one class of samples approach one
hyperplane and stay away from the other hyperplane. Since TSVM converts a large QPP into
two small-scale QPPs and the number of constraints for each small-scale QPP is half that of
the original problem, the training performance can be efficiently improved [22]. On account
of the obvious advantages, TSVM has become a hot topic in the field of machine learning
and has been successfully used in intrusion detection [6, 23, 24], speaker recognition [8, 25,
26], cancer diagnosis and prognosis [7, 27, 28] and many other fields.

TSVM Extensions To further improve the comprehensive performance of TSVM, many emi-
nent improvements are made, e.g., the least-square TSVM (LSTSVM) [29–32], weighted
TSVM (WTSVM) [33–36], projection TSVM (PTSVM) [37–39], etc. We refer the inter-
ested readers to recent surveys [40, 41] for a more in-depth treatment of the area.

To improve the solving speed, Kumar et al. introduced the concept of approximate SVM
to the original problem of TSVM and then proposed LSTSVM [42]. LSTSVM also needs
to generate two non-parallel hyperplanes, but it only considers linear equality constraints
instead of inequality ones in the original problemof TSVM. It extremely improves the solving
efficiency and prediction accuracy. To extend LSTSVM into multi-classification problems,
Chen et al. proposed a multi-classification LSTSVM classifier [43] based on the idea of
optimal directed acyclic graph.

Because TSVM cannot fully exploit the potential correlation or similar information
between any pair of data points with the same label, Ye et al. proposed WTSVM with local
information [44] to overcome this shortcoming.WTSVM retains the benefits of TSVMwhile
being able to mine as much potentially similar information as possible from the sample.
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The general idea of PTSVM [45] is to find two projection directions, one for each class.
The projection sample of such a class is well separated from the projection sample of the other
class in its subspace. More than one projection axis is generated for each class, which further
improves the performance of the algorithm. To overcome the singularity, principal component
analysis (PCA) is used to transform the data in the original space into a lower-dimensional
subspace.

Parameter Tuning Method Aiming at several important PQP problems in machine learning,
researchers have put forward corresponding solutions [10–12, 46–49].

Hastie et al. proposed an entire regularization solution path algorithm based on SVM,
termed as SVMPath [10]. SVMPath does not require multiple retraining of the model,
which greatly improves the computational performance of SVM parameter tuning. Pan et al.
designed a safety screening rule [11] to solve the original problem of QPP, which is helpful
to speed up the TSVM training process. However, the entirely regularized solution path is not
fully explored. Yang et al. proposed the piecewise linear solution algorithm of TSVM based
on Pinball loss [12], which can provide optimal precision for all possible parameter values.
Without solving QPP, the starting point of the solution path can be solved analytically, and
it achieves good flexibility and predictive performance. However, the role of regularization
is loose.

Although researchers have proposed many techniques to solve the PQP problem [49],
they all affect the performance of TSVM to some extent. This work strengthens the role of
regularization and designs a better solution path algorithm for the PQP problem of TSVM.

3 Preliminaries

In this section, we first define necessary notations, and then briefly give two sub-optimization
problems of TSVM. Finally, we propose a simple yet effective sample partition strategy after
model transformation.

3.1 Notations

This paper denotes T = {(x1, y1), (x2, y2), . . . , (xn, yn)} as the training set of samples,
where n is the number of samples, xi ∈ R

m×1 is the feature vector of the i th sample and
yi ∈ {−1, 1} is its corresponding class label. A and B are used to represent the index sets
of positive (+1) and negative (−1) samples, respectively. Let A = [x1, x2, . . . , xnA ]T and
B = [x1, x2, . . . , xnB ]T , where nA and nB are the number of two classes respectively, s.t.,
n = nA + nB .

3.2 Twin Support Vector Machine

To distinguish the different sample categories, the basic idea is to find a partition hyperplane
in the sample space based on the training set. TSVM solves the classification problem by
constructing two non-parallel hyperplanes f1 : xTw1 + b1 = 0 and f2 : xTw2 + b2 = 0
instead of one hyperplane, where w1 ∈ R

m×1 and w2 ∈ R
m×1 are the normal vectors of the

two hyperplanes, respectively.
As shown in Fig. 1, each hyperplane corresponds to a class of samples, and each class

of samples is as close as possible to its corresponding hyperplane and away from the other
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Fig. 1 Illustration of TSVM: the red circle samples is in the setA, marked as+1, the violet square samples are
in the setB, marked as−1, and solid lines in red and violet represent two nonparallel hyperplanes, respectively.
In addition, the distance from the sample to the hyperplane is also indicated in the figure

hyperplane. Accordingly, the label of a new sample is determined by the distance of the
sample from two hyperplanes.

Compared with SVM [4], TSVM [5] solves two small-sized QPPs instead of a large one,
as follows:

min
w1,b1,ξ

1

2
‖Aw1 + b1enA‖2 + c1eTnB ξ

s.t. − (Bw1 + b1enB ) + ξ ≥ enB ,

ξ ≥ 0enB ,

(1)

and

min
w2,b2,η

1

2
‖Bw2 + b2enB‖2 + c2eTnA

η

s.t. (Aw2 + b2enA ) + η ≥ enA ,

η ≥ 0enA ,

(2)

where the penalty parameters satisfy c1 > 0 and c2 > 0, ξ ∈ R
nB×1 and η ∈ R

nA×1 are slack
variables, and enA ∈ R

nA×1 and enB ∈ R
nB×1 are the unit vectors with different dimensions.

3.3 Partition Strategies

We first transform the two QPPs into their dual formats respectively so that the solution can
be obtained, and then propose corresponding sample partition strategies.

123



K. Zhou et al.

3.3.1 The First QPP

Model Transformation For the first sub-optimization problem, let λ1 = 1/c1, the QPP (1)
can be converted to (3).

min
w1,b1,ξ

λ1

2
‖Aw1 + b1enA‖2 + eTnB ξ

s.t. − (Bw1 + b1enB ) + ξ ≥ enB ,

ξ ≥ 0enB .

(3)

Compared with Eq. (1), this transformation emphasizes the role of regularization [10].
The Lagrangian function of the QPP (3) can be constructed as follows:

L1(w1, b1, ξ ,α,β) =λ1

2
‖Aw1 + b1enA‖2 + eTnB ξ

+ αT[enB + (Bw1 + b1enB ) − ξ ] − βTξ .

(4)

where α ∈ R
nB×1 and β ∈ R

nB×1 are vectors of Lagrangian multipliers, and each of their
components satisfies αi ≥ 0 and βi ≥ 0 (i ∈ B).

Let the partial derivative ofL1(w1, b1, ξ ,α,β)w.r.t.w1, b1 and ξ be equal to zero respec-
tively, and we can obtain the following equations:

∂L1

∂w1
= λ1AT(Aw1 + b1enA ) + BTα = 0em, (5)

∂L1

∂b1
= λ1eTnA

(Aw1 + b1enA ) + eTnBα = 0, (6)

∂L1

∂ξ
= enB − α − β = 0enB . (7)

From Eqs. (5) and (6), we have

λ1HTHu + GTα = 0em+1, (8)

where H = [A enA ], G = [B enB ] and u =
[

w1

b1

]
.

When the matrix HTH is invertible, we can obtain

u = − 1

λ1

(
HTH + δI

)−1
GTα, (9)

where the regularization term δI is to avoid the possible irreversible problem of HTH, δ is
a minimal positive number, and I ∈ R

(m×1)×(m×1) is an unit matrix. By substituting Eq. (9)
into the hyperplane f1(x), we can obtain

f1(x) = − 1

λ1

[
xT 1

] (
HTH + δI

)−1
GTα. (10)

Partition Strategy for Samples in B In combination with Karush–Kuhn–Tucker (KKT) con-
ditions [5], we can obtain

αT[enB + (Bw1 + b1enB ) − ξ ] = 0, (11)

−(Bw1 + b1enB ) + ξ − enB ≥ 0enB , (12)

βTξ = 0, (13)

ξ ≥ 0enB . (14)
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Fig. 2 Diagram of the partition of set B: three different color-coded boxes represent three sample index sets
LB , EB and RB respectively, in which each box indicates the conditions that the sample points in the index
set meet

For ∀i ∈ B, the following facts can be obtained from Eqs. (5)–(14).

• −(xTi w1 + b1) < 1
(12)�⇒ ξi > 0

(13)�⇒ βi = 0
(7)�⇒ αi = 1.

• −(xTi w1 + b1) = 1
(12)�⇒ ξi ≥ 0

(13),(7)�⇒ 0 ≤ βi ≤ 1
(7)�⇒ 0 ≤ αi ≤ 1.

• −(xTi w1 + b1) > 1
(12)�⇒ ξi ≥ 0

(12)�⇒ −(xTi w1 + b1) + ξi − 1 > 0
(11)�⇒ αi = 0.

Therefore, the set B can be ulteriorly divided into three index sets LB , EB and RB as
shown in Fig. 2, where LB = {i | −(xTi w1 + b1) < 1}, EB = {i | −(xTi w1 + b1) = 1} and
RB = {i | −(xTi w1 + b1) > 1}.
The Dual Problem Additionally, using Eq. (4) and the above KKT conditions in Eqs. (11),
(12), (13), (14), we can obtain the Wolfe dual [5] of Eq. (3) as follows:

max
α

eTnBα − 1

2λ1
αTG

(
HTH + δI

)−1
GTα

s.t. 0enB ≤ α ≤ enB .

(15)

3.3.2 The Second QPP

Model Transformation In exactly the similar way, let λ2 = 1/c2, the second QPP (2) can be
converted to

min
w2,b2,η

λ2

2
‖Bw2 + b2enB‖2 + eTnA

η

s.t. (Aw2 + b2enA ) + η ≥ enA ,

η ≥ 0enA .

(16)

The Lagrangian function of the QPP (16) can be constructed as follows:

L2(w2, b2, η, γ ,ω) =λ2

2
‖Bw2 + b2enB‖2 + eTnA

η

+ γ T[enA − (Aw2 + b2enA ) − η] − ωTη,

(17)

where γ ∈ R
nA×1 and ω ∈ R

nA×1 are vectors of Lagrangian multipliers , and each of their
components satisfies γi ≥ 0 and ωi ≥ 0 (i ∈ A).
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Let the partial derivative of L2(w2, b2, η, γ ,ω) w.r.t. w2, b2 and η be equal to zero
respectively, the following equations can be obtained.

∂L2

∂w2
= λ2BT(Bw2 + b2enB ) − ATγ = 0em, (18)

∂L2

∂b2
= λ2eTnB (Bw2 + b2enB ) − eTnA

γ = 0, (19)

∂L2

∂η
= enA − γ − ω = 0enA . (20)

From Eqs. (18) and (19), we have

λ2QTQv − PTγ = 0em+1, (21)

where P = [A enA ], Q = [B enB ] and v =
[

w2

b2

]
.

When the matrix QTQ is invertible, we can obtain

v = 1

λ2

(
QTQ + δI

)−1
PTγ , (22)

where the regularization term δI is to avoid the possible irreversible problem of QTQ. By
substituting Eq. (22) into the hyperplane f1(x), we can obtain

f2(x) = 1

λ2

[
xT 1

] (
QTQ + δI

)−1
PTγ . (23)

Partition Strategy for Samples in A In combination with KKT conditions, we can obtain

γ T[enA − (Aw2 + b2enA ) − η] = 0, (24)

(Aw2 + b2enA ) + η − enA ≥ 0enA , (25)

ωTη = 0, (26)

η ≥ 0enA . (27)

For ∀i ∈ A, the following facts can be obtained.

• xTi w2 + b2 < 1
(25)�⇒ ηi > 0

(26)�⇒ ωi = 0
(20)�⇒ γi = 1.

• xTi w2 + b2 = 1
(25)�⇒ ηi ≥ 0

(26),(20)�⇒ 0 ≤ ωi ≤ 1
(20)�⇒ 0 ≤ γi ≤ 1.

• xTi w2 + b2 > 1
(25)�⇒ ηi ≥ 0

(25)�⇒ xTi w2 + b2 + ηi − 1 > 0
(24)�⇒ γi = 0.

Then, we can get the similar partition results as shown in Fig. 3, i.e., the set A can
be divided into three index sets LA, EA and RA, where LA = {i | xTi w2 + b2 < 1},
EA = {i | xTi w2 + b2 = 1} and RA = {i | xTi w2 + b2 > 1}.
The Dual Problem Similarly, using Eq. (17) and the above KKT conditions in Eqs. (24), (25),
(26), (27), we can obtain the Wolfe dual [5] of Eq. (16) as follows:

max
α

eTnA
γ − 1

2λ2
γ TQ

(
PTP + δI

)−1
QTγ

s.t. 0enA ≤ γ ≤ enA . (28)
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Fig. 3 Diagram of the partition of set A: three different color-coded boxes represent three sample index sets
LA , EA and RA respectively, in which each box indicates the conditions that the sample points in the index
set meet

Fig. 4 Illustration of possible events: there are four different kinds of possible events for three sets L, E and
R

4 Piecewise Linear Theory

In this section, the event is first defined and discussed. Then, the piecewise linear theory is
established for the above twoQPPs, i.e., the Lagrangianmultipliers are proved to be piecewise
linear w.r.t. the regularization parameters respectively.

Definition 1 When the regularization parameter changes, the index sets change accordingly.
This paper defines the change of the sample point from one set C1 to another one C2 w.r.t.
the regularization parameter as an event, denoted as C1 → C2.

4.1 Possible Events

For every sub-optimization problem, there are always four different kinds of possible events
for three index sets, as shown in Fig. 4. We discuss two QPPs separately in the following.
The First QPP The QPP (3) mainly depends on the samples at the elbow EB . When the
regularization parameter λ1 changes, the sample index sets LB , EB and RB will change
accordingly. We consider all the possible events from the following three scenarios.

i. If EB �= ∅, then the sample xi (i ∈ EB) from the set EB might go into sets LB or RB ,
i.e.,

Event 1 EB → LB ⇔ 0 ≤ αi ≤ 1 → αi = 1 ⇔ f1(xi ) = −1 → f1(xi ) > −1.
Event 2 EB → RB ⇔ 0 ≤ αi ≤ 1 → αi = 0 ⇔ f1(xi ) = −1 → f1(xi ) < −1.

ii. If LB �= ∅, then the sample xi (i ∈ LB) from the set LB might go into the set EB , i.e.,

Event 3 LB → EB ⇔ αi = 1 → 0 ≤ αi ≤ 1 ⇔ f1(xi ) > −1 → f1(xi ) = −1.

iii. If RB �= ∅, then the sample xi (i ∈ RB) from the set RB might go into the set EB , i.e.,

Event 4 RB → EB ⇔ αi = 0 → 0 ≤ αi ≤ 1 ⇔ f1(xi ) < −1 → f1(xi ) = −1.
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The Second QPP Likewise, the second QPP (16) mainly depends on the samples at the elbow
EA. When the regularization parameter λ2 changes, the sample index sets LA, EA and RA

will change accordingly. In the same way, we consider all possible events from the following
three scenarios.

i. If EA �= ∅, then the sample xi (i ∈ EA) from the set EA might go into sets LA and RA,
i.e.,

Event 1 EA → LA ⇔ 0 ≤ γi ≤ 1 → γi = 1 ⇔ f2(xi ) = 1 → f2(xi ) < 1.
Event 2 EA → RA ⇔ 0 ≤ γi ≤ 1 → γi = 0 ⇔ f2(xi ) = 1 → f2(xi ) > 1.

ii. If LA �= ∅, then the sample xi (i ∈ LA) from the set LA might go into the set EA, i.e.,
Event 3 LA → EB ⇔ γi = 1 → 0 ≤ γi ≤ 1 ⇔ f2(xi ) < 1 → f2(xi ) = 1.

iii. If RA �= ∅, then the sample xi (i ∈ RA) from the set RB might go into the set EB , i.e.,
Event 4 RA → EA ⇔ γi = 0 → 0 ≤ γi ≤ 1 ⇔ f2(xi ) > 1 → f2(xi ) = 1.

4.2 Piecewise Linear w.r.t. the Regularization Parameter

The First QPP For convenience, let Ll
B , E lB and Rl

B respectively denote the sample index
sets of the first QPP (3) after the occurrence of the lth event. The number of elements in each

set is denoted by | · |. We use x
El
B

i and elB ∈ R
m×nlB to represent i th sample and the matrix

composed of samples from the corresponding index set E lB , respectively. In particular, let
nlB =| elB | and GE = [El

B enlB
].

Theorem 1 (Piecewise Linear Theory of the First QPP) For the first QPP (3), when λl+1
1 <

λ1 < λl1, let

Āl = Gl
E

(
HTH + δI

)−1
(
Gl

E

)T
,

and then we can get that the Lagrangian multipliers αi (i ∈ EB) are piecewise linear w.r.t.
the regularization parameter λ1, i.e.,

αi = αl
i −

(
λl1 − λ1

)
θ li , (29)

where θ li is the i th element of the vector θ l .

θ l =
(
Ā
)−1

enlB
. (30)

Proof The following is to prove Theorem 1, i.e., the Lagrangian multipliers αi are piecewise
linear w.r.t. the regularization parameter λ1.

According to Eq. (10), its lth step function can be obtain

f l1(x) = − 1

λl1

[
xT 1

] (
HTH + δI

)−1
GTαl . (31)

Then, it is easy to obtain

f1(x) = λl1

λ1
f l1(x) + f1(x) − λl1

λ1
f l1(x)

= 1

λ1

[
λl1 f

l
1(x) + [

xT 1
] (
HTH + δI

)−1
GT

(
αl − α

)]
. (32)
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For ∀i ∈ B, there are three special scenarios without considering any possible events, i.e.,

• If i ∈ Ll
B , then αi = αl

i = 1.
• If i ∈ E lB , then f1(x) = f l1(x) = −1.
• If i ∈ Rl

B , then αi = αl
i = 0.

Therefore, Eq. (32) can be simplified

Gl
E

(
HTH + δI

)−1
(
Gl

E

)T (
αE

l − αE

)
= Āl

(
αE

l − αE

)

=
(
λl1 − λ1

)
enlB

.

(33)

If Āl is invertible, the we can obtain

αE = αl
E −

(
λl1 − λ1

) (
Āl

)−1
enlB

= αl
E −

(
λl1 − λ1

)
θ l . (34)

To sum up, Theorem 1 is proved. �
Corollary 1 (Corollary to Theorem 1) According to Theorem 1, the recursive expression of
hyperplane function f1(x) is

f1(x) = 1

λ1

[
λl1 f

l
1(x) +

(
λl1 − λ1

)
hl(x)

]
, (35)

where

hl(x) = [
xT 1

] (
HTH + δI

)−1
(
Gl

E

)T
θ l . (36)

The SecondQPP For convenience, letLl
A, E lA andR

l
A respectively represent the sample index

sets of the secondQPP (16) after the occurrence of the lth event.We use x
El
A

i and elA ∈ R
m×nlA

to represent i th sample and the matrix composed of samples from the corresponding index
set E lA, respectively. In particular, let nlA =| E lA | and PE = [El

A enlA
].

Theorem 2 (Piecewise Linear Theory of the Second QPP) For the second QPP (16), when
λl+1
2 < λ2 < λl2, let

B̄l = Pl
E

(
QTQ + δI

)−1
(
Pl
E

)T
,

and then we can get that the Lagrangian multipliers γi (i ∈ EA) are piecewise linear w.r.t.
the regularization parameter λ2, i.e.,

γ i = γ l
i −

(
λl2 − λ2

)
ϑ l
i , (37)

where ϑ l
i is the i th element of the vector ϑ l .

ϑ l = (
B̄

)−1
elnA

. (38)

Proof The proof of Theorem 2 is similar to that of Theorem 1, and it is listed in Appendix A
in detail. �
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Corollary 2 (Corollary to Theorem 2) According to Theorem 2, the recursive expression of
hyperplane function f2(x) is

f2(x) = 1

λ2

[
λl2 f

l
2(x) −

(
λl2 − λ2

)
gl(x)

]
, (39)

where

gl(x) = [
xT 1

] (
QTQ + δI

)−1
(
Pl
E

)T
ϑ l . (40)

Notably, the establishment of piecewise linear theory in Theorems 1 and 2 makes us only
solve the breakpoints to obtain the entirely regularized solution path. It not only greatly
extends the search space to (0,+∞), but also improves the solving efficiency compared with
the grid search method.

5 Initialization

Before introducing the solution path algorithm, we propose a simple yet efficient initializa-
tion. It is first proved that when the regularization parameter approaches the positive infinity,
the Lagrangian multiplier is 1. Thus, we can establish the initial state of the sets defined
above. Then, the corresponding initialization of two sub-optimization problems is designed
without solving QPPs.
Initialization of the First QPP Theorem 3 can be used to prove that when the regularization
parameter λ1 approaches positive infinity, the Lagrangian multiplier αi is 1.

Theorem 3 For the first QPP (3), when λ1 approaches infinity, the Lagrangian multipliers
αi (i ∈ B) are always equal to 1, i.e., if λ1 → +∞, then αi = 1 (i ∈ B).

Proof From Eq. (10), when λ1 approaches infinity, it is easy to get − f1(xi ) = 0 > −1 (i ∈
B). According to the definition of index setLB in Fig. 2,we can obtain directlyαi = 1 (i ∈ B).
Therefore, Theorem 3 can be proved. �
Initialization of the Second QPP Theorem 4 can be used to prove that when the regularization
parameter λ2 approaches the positive infinity, the Lagrangian multiplier γi is 1.

Theorem 4 For the secondQPP (16), whenλ2 approaches infinity, theLagrangianmultipliers
γi (i ∈ A) are always equal to 1, i.e., if λ2 → +∞, then γi = 1(i ∈ A).

Proof The proof of Theorem 4 is similar to that of Theorem 3. From Eq. (23), when λ2
approaches infinity, it is easy to get f2(xi ) = 0 < 1 (i ∈ A). According to the definition of
index set LA in Fig. 3, we can obtain directly γi = 1 (i ∈ A). Therefore, Theorem 4 can be
proved. �
Initialization Algorithm We have got the initial Lagrangian multipliers α0

i = 1 (i ∈ B) and
β0
i = 1 (i ∈ A)when the regularization parameters are sufficiently large through Theorems 3

and 4. Additionally, all the sample points lie in the left of the elbow from Figs. 2 and 3. The
general idea of the initialization process is to initialize regularization parameters λ01 and λ02
when the first sample point goes into the elbow from its left.

Specifically, we first iterate over all the sample points to obtain the corresponding initial
candidate values for regularization parameters by assuming that they enter the elbow from the
left set of the elbow. The largest regularization parameter candidate values are then assigned
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Fig. 5 Flowchart of the proposed fast regularization parameter tuning algorithm for TSVM (TSVMPath). It
mainly consists of two steps: initialization as shown in Algorithm 1 and updating as shown in Algorithm 2,
where the initialization aims to assign initial values to parameters by solving event 1 and the updating process
aims to find out the entire solution path by reducing the value of the regularization parameter

to initial ones λ01 and λ02, respectively. Thus, we can extend the search space of regularization
parameters to (0,+∞) without solving QPPs.

Algorithm 1 describes the initialization process of the first QPP (3) in detail. The initial-
ization process of the second QPP (16) is exactly in the same way.

Algorithm 1: Initialization Algorithm of QPP (3)
Input: Training sample matrices A and B and the system parameter δ.
Output: Initial parameters λ01, α

0, u0, L0
B , E0B andR0

B .
1 H ← [A enA ], nA ← size(A, 1);
2 G ← [B enB ], nB ← size(B, 1);
3 I ← eye(m + 1),m ← size(A, 2);

4 L0
B , E0B , R0

B ← {1, 2, . . . , nB }, ∅, ∅; // By Theorem 3.

5 α0 ← enB ; // By Theorem 3.

6 λ01 ← 0; // Initialize to a minimum.
7 foreach i ∈ B do

8 λ ←
[
xTi 1

] (
HTH + δI

)−1
GTα; // Solve L0

B → R0
B using Eq. (10).

9 if λ01 < λ then
10 λ01 ← λ; // Take the largest λ.
11 p ← i ; // Remember the sample point.
12 end
13 end

14 u0 ← − 1
λ01

(
HTH + δI

)−1
GTα0; // By Eq. (9)

15 Take the sample point p out of L0
B and put it in E0B ;

16 return λ01, α
0, u0, L0

B , E0B , R0
B ;

6 Fast Regularization Parameter Tuning Algorithm

After initialization,we can get initial parameters usingAlgorithm1.To design the fast regular-
ization parameter tuning algorithm for TSVM, we need to update the (l+1)th step parameter
for iteration. Furthermore, it is feasible to set the appropriate termination conditions.

Definition 2 When the regularization parameter changes, several events may occur. This
paper defines the first event as the event that has the highest priority to occur.
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6.1 Finding �l+1
1

For the first QPP (3), when the λ1 reduces from +∞ to 0, there are four types of events that
can occur as described in Sect. 4.1. We consider these events separately below.

Event 1 If E lB → Ll
B , then αi = 1. From Eq. (29), when this event occurs, the regular-

ization parameter can be updated to

λ
(1)
1 = max

i∈El
B

{
λl1 − αl

i − αi

θ li

}
= max

i∈El
B

{
λl1 − αl

i − 1

θ li

}
, (41)

where θ li < 0.
Event 2 If E lB → Rl

B , then αi = 0. From Eq. (29), when this event occurs, the regular-
ization parameter can be updated to

λ
(2)
1 = max

i∈El
B

{
λl1 − αl

i − αi

θ li

}
= max

i∈El
B

{
λl1 − αl

i

θ li

}
, (42)

where θ li > 0.
Event 3 If Ll

B → E lB , then − f1(xi ) = 1. From Eq. (35), when this event occurs, the
regularization parameter can be updated to

λ
(3)
1 = max

i∈Ll
B

{
λl1

f l1(xi ) + hl(xi )

f1(xi ) + hl(xi )

}
= max

i∈Ll
B

{
λl1

f l1(xi ) + hl(xi )

−1 + hl(xi )

}
. (43)

Event 4 If Rl
B → E lB , then − f1(xi ) = 1. From Eq. (35), when this event occurs, the

regularization parameter can be updated to

λ
(4)
1 = max

i∈Rl
B

{
λl1

f l1(xi ) + hl(xi )

f1(xi ) + hl(xi )

}
= max

i∈Rl
B

{
λl1

f l1(xi ) + hl(xi )

−1 + hl(xi )

}
. (44)

Therefore, the first event e1 can be selected and then the next step regularization parameter
λl+1
1 can be updated accordingly. At the same time, the Lagrangian multiplier αi , index set

Ll
B , E lB ,Rl

B and other parameters are updated according to the first event e1.

e1 = argmax
i

{
λ

(i)
1 | i = 1, 2, 3, 4

}
, (45)

λl+1
1 = max

{
λ

(i)
1 | i = 1, 2, 3, 4

}
. (46)

6.2 Finding �l+1
2

Similarly, for the second QPP (16), when the λ2 reduces from +∞ to 0, there are also four
types of events that can occur as described in Sect. 4.1. We consider these events separately
below.

Event 1 If E lA → Ll
A, then γi = 1. From Eq. (37), when this event occurs, the regulariza-

tion parameter can be updated to

λ
(1)
2 = max

i∈El
A

{
λl1 − γ l

i − γi

ϑ l
i

}
= max

i∈El
A

{
λl2 − γ l

i − 1

ϑ l
i

}
, (47)

where ϑ l
i < 0.
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Event 2 If E lA → Rl
A, then γi = 0. From Eq. (37), when this event occurs, the regular-

ization parameter can be updated to

λ
(2)
2 = max

i∈El
A

{
λl2 − γ l

i − γi

ϑ l
i

}
= max

i∈El
A

{
λl2 − γ l

i

ϑ l
i

}
, (48)

where ϑ l
i > 0.

Event 3 If Ll
A → E lA, then f2(xi ) = 1. From Eq. (39), when this event occurs, the

regularization parameter can be updated to

λ
(3)
2 = max

i∈Ll
A

{
λl2

f l2(xi ) − gl(xi )

f2(xi ) − gl(xi )

}
= max

i∈Ll
A

{
λl2

f l2(xi ) − gl(xi )

1 − gl(xi )

}
. (49)

Event 4 If Rl
A → E lA, then f2(xi ) = 1. From Eq. (39), when this event occurs, the

regularization parameter can be updated to

λ
(4)
2 = max

i∈Rl
A

{
λl2

f l2(xi ) − gl(xi )

f2(xi ) − gl(xi )

}
= max

i∈Rl
A

{
λl2

f l2(xi ) − gl(xi )

1 − gl(x)

}
. (50)

Therefore, the first event e2 can be selected and then the next step regularization parameter
λl+1
2 can be updated accordingly. At the same time, the Lagrangian multiplier γi , index set

Ll
A, E lA,Rl

A and other parameters are updated according to the first event e2.

e2 = argmax
i

{
λ

(i)
2 | i = 1, 2, 3, 4

}
, (51)

λl+1
2 = max

{
λ

(i)
2 | i = 1, 2, 3, 4

}
. (52)

Algorithm 2: Parameter Update Algorithm of QPP (3)
Input: The lth step parameters, regularized threshold t and the number of maximum iterations lmax.
Output: The (l + 1)th step parameters.

1 while λl1 ≤ t and l ≤ lmax do
2 Obtain Āl , el , θ l0 and θ li (i ∈ ElB ) according to Theorem 1;

3 Calculate λ
(i)
1 (i = 1, 2, 3, 4) using Eqs. (41), (42), (43), (44);

4 Determine the first event e1 by Eq. (45) and then obtain λl+1
1 by Eq. (46);

5 Obtain and update αl+1, ul+1, Ll+1
B , El+1

B andRl+1
B ;

6 l ← l + 1;
7 end
8 return (l + 1)th step parameters;

6.3 Process of TSVMPath

For a binary dataset D, the two classes of samples are denoted by A and B and labeled by
“+1” and “−1”, respectively. As shown in Fig. 5, TSVMPathmainly consists of initialization
and updating. Next, we train it through the following steps:
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Step 1 We randomly divide the dataset into training set and test set accordingly to the
partition ratio r . Then, divide the training set into ten parts to carry out 10-fold
cross-validation.

Step 2 One fold is selected sequentially as the validation set and the rest as the training.
Step 3 Calculate the regularized solution path for the first QPP (3).
Step 3.1 Invoke Algorithm 1 to obtain the initial parameters λ01, u

0, α0.
Step 3.2 Determine the (l + 1)th step regularization parameter λl+1

1 based on Sect. 6.1.
Step 3.3 Invoke Algorithm 2 to update the (l+1)th step parameters according to the first

event e1.
Step 3.4 If the λl+1

1 is less than the threshold t or the maximum iterations exceeds the
top, then stop the loop and go to Step 3, otherwise set l = l + 1, go to Step 3.2
and continue the next loop.

Step 4 Obtain the entirely regularized solution path for the second QPP (16) similar to
Step 2.

Step 5 Test on the validation set to choose the optimal combination of parameters λ∗
1

and λ∗
2. Obtain the hyperplanes f1 and f2 by the optimal parameters. We use

the decision function to test any sample x in the test set and then obtain the
classification accuracy.

f (x) =

⎧⎪⎨
⎪⎩

+1, c < d

−1, c > d

0, otherwise.

(53)

where c and d denote the distance from the sample x to two hyperplanes respectively, i.e..

c = | f1(x) |
‖w1‖ , (54)

d = | f2(x) |
‖w2‖ . (55)

Step 6 Return Step 2 for the next fold until training ten folds.
Step 7 The average value of the ten times classification accuracy on the same test set

is taken as the final classification accuracy.

7 Experiments

To evaluate and analyze the performance of the proposed algorithm, we first verify the
piecewise linear theory and then compare it with different baselines in terms of the prediction
accuracy and the computational overhead.

7.1 Setup

Using MATLAB R2021a, all the experiments are performed on the personal computer
equipped with Intel (R) Core (TM) i7-7500U 2.90GHz CPU and 8GB of RAM.
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Table 1 Properties of 8 machine
learning UCI datasets used in this
paper

# Datasets Number of samples Dimension
Positive Negative Total

1 Blood 570 178 748 4

2 Bupa 145 200 345 6

3 Cancer 444 239 683 9

4 Diabetes 268 500 768 8

5 Haberman 225 81 306 3

6 Heartstatlog 150 120 270 13

7 WBC 444 239 683 9

8 WDBC 357 212 569 30

7.1.1 Datasets

We evaluate TSVMPath on 8 binary UCI datasets,2 i.e., Blood, Bupa, Cancer, Diabetes,
Haberman, Heartstatlog, WBC and WDBC. The positive sample number, negative sam-
ple number, total sample number and feature dimension of the 8 UCI datasets are shown
in Table 1. To ensure the diversity of datasets, we selected datasets with different feature
dimensions. These datasets have different numbers of instances, ranging from hundreds to
thousands. Among these benchmark datasets, the dataset with the smallest feature dimen-
sion is Haberman, whose feature dimension is 3, and the dataset with the largest feature
dimension is WDBC, up to 30.

7.1.2 Implementation Details

To avoid the matrix irreversible problem, we set δ = 10−8. For the fast regularization
parameter tuning algorithm, the corresponding solving loop stops when the regularization
parameter λ is less than the threshold 10−4 or the maximum number of iterations exceeds
3000. For the contrast experiments, we set the initial parameters λ01 = 1000 and λ02 =
1000. The proposed algorithm is compared with TSVM [5], weighted linear loss TSVM
(WLTSVM) [36] and least-square projection TSVM (LSPTSVM) [32]. The original TSVM
is solved using quadprog toolbox of MATLAB.

In this paper, we randomly divide each dataset into the training set and test set according
to the ratio r = 3 : 1. For each training set, the proposed algorithm is trained by tenfold
cross-validation to select the optimal parameter pair (λ1, λ2) for testing.

7.2 Results and Analysis

We first visualize the entirely regularized solution path of two sub-optimization problems to
verify the pairwise linear theory. Then, we analyze the first event and compare the prediction
accuracy performance and training time with state-of-the-art methods. Finally, we discuss
the computational overhead and time complexity of TSVMPath.

2 Download UCI datasets at https://archive.ics.uci.edu/ml/index.php.

123

https://archive.ics.uci.edu/ml/index.php


K. Zhou et al.

(a) (b) (c)

(f)(e)(d)

Fig. 6 Solution path diagrams of the first QPP (3) (Heartstatlog): a–f variation diagrams of λ1, α,
α(5, 10, 15,...,50), w1, b1 and f1 w.r.t. the step l, respectively

(a) (b) (c)

(f)(e)(d)

Fig. 7 Solution path diagrams of the second QPP (16) (Heartstatlog): a–f variation diagrams of λ2, γ ,
γ(5, 10, 15,...,50), w2, b2 and f2 w.r.t. the step l, respectively

7.2.1 Regularized Solution Path

To test the piecewise linear theory, taking the dataset Heartstatlog as a verification
example,we obtain the solution of twoQPPs as shown in Figs. 6 and 7. Figures 6a and 7a show
the regularization parameter changes of the two QPPs respectively, where the initialization
parameters of two QPPs are λ01 = 14.4014 and λ02 = 12.1583 respectively. It is obvious that
the regularization parameter gradually reduces to less than the threshold value t and then
stops the iteration. It is also explicit that the Lagrangian multipliers are piecewise linear w.r.t.
regularization parameters from Figs. 6b and 7b. Furthermore, to clearly show the piecewise
linear solution path of the twoQPPs,we select several sample points to show its corresponding
Lagrangianmultipliers in Figs. 6c and 7c. It can be unambiguously seen that the experimental
results are consistent with piecewise linear theory in Sect. 4.

Form Figs. 6b and 7b, the Lagrangian multipliers can be vaguely seen that almost all of
them tend to go from 1 to 0. In general, we can see that the Lagrangian multipliers tend
to go from 1 to 0 in Fig. 7c. However, it is also clear from Fig. 6c that the Lagrangian
multiplier may also tend to increase from 0. Indeed, this is related to the defined events in
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Table 2 First events of the solution path on Heartstatlog

# Event 1 Event 2 Event 3 Event 4 # Total

# Freq. # Freq. # Freq. # Freq.

QPP 1 26 0.0844 123 0.3994 107 0.3474 52 0.1688 308

QPP 2 6 0.0222 124 0.4593 118 0.4370 22 0.0815 270

(a) (b)

Fig. 8 Predictive decision diagram (Heartstatlog): a, b plots of ours and TSVM by solving QPPs, respectively.
The blue “+” samples and the red “×” samples are labeled as “+1” and “−1” respectively; the horizontal and
vertical axes represent the distance between the samples and the two hyperplanes respectively, and the green
divider line indicates the equal distance between the two hyperplanes and the samples

Sect. 4. The experimental results are consistent with the algorithm design because we allow
the Lagrangian multipliers to perform arbitrary changes between 0 and 1.

Additionally, the solution path w.r.t.w1, b1, f1 andw2, b2, f2 are shown in Figs. 6d–f and
7d–f. As shown in Fig. 6f, we can see that the value of f1 has a trend from greater than −1
to less than −1. This is because at the beginning, all sample points are on the left set of the
elbow, and as the algorithm iterates, the sample gradually moves from the left of the elbow
to that of the right, as shown in Fig. 2.

7.2.2 First Events Analysis

The variation trend of Lagrangianmultipliers can be intuitively reflected from the distribution
of the first events. Similarly, Table 2 shows an example to count the number of first events
for the two QPPs on the dataset Heartstatlog. From the data in the first row of Table 2,
it can be seen that the frequencies of event 2 and event 3 are greater than that of event 1 and
event 4. Therefore, it can be inferred that the samples in the first QPP tend to move closer
to the index set RB and the Lagrangian multipliers tend to move to decrease to 0 from the
initial value 1. Moreover, it is just in the similar way for the second QPP from the data in the
second row of Table 2.

The experimental results are consistent with the theory of the piecewise linear solution
algorithm. According to Theorems 3 and 4, all the sample points are located in the setLB and
LA respectively during initialization. Then, the sample points may go from LB or LA to the
elbow, and the sample points at the elbow can go intoL andR, respectively. Similarly, sample
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(a) (b)

Fig. 9 Cross-validation accuracy heatmaps of a TSVMPath and b the grid search method for TSVM

(a) (b) (c)

(f) (g) (h)(e)

(d)

Fig. 10 Accuracy (%) curves on 8 UCI datasets: a–l the ten times predictive accuracy diagrams, in which blue
circle lines, orange square lines, yellow triangle lines, purple plus lines and green cross lines, cyan plus lines
and dark red pentagram lines are the prediction results of TSVMPath (ours), grid search methods for TSVM,
WLTSVM [36] and LSPTSVM [32], and non-grid search methods for TSVM,WLTSVM [36] and LSPTSVM
[32], respectively

points inRA orRB will have analogous events. We hope that all Lagrangian multipliers can
change from 1 to 0 to obtain an entirely regularized solution path, which corresponds exactly
to event 2 and event 3.

From Table 2, it can be inferred that the samples in two QPPs tend to move closer to
the index set LB and LA respectively. At the same time, the Lagrangian multipliers tend to
decrease to 0 from 1. Therefore, the results dovetailed with our expectations.

7.2.3 Prediction Accuracy

Similarly, taking the dataset Heartstatlog as an example, the predicted results of ours
and TSVM by solving QPPs on the test dataset are shown in Fig. 8a, b in one experiment. In
Fig. 8, the horizontal axis represents the distance between the predicted sample and the first
hyperplane, while the vertical axis represents the distance between the predicted sample and
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Table 4 Training time (s) on 8 UCI datasets

Dataset Ours Grid search methods Non-grid search methods

TSVM WLTSVM LSPTSVM TSVM WLTSVM LSPTSVM

Blood 0.0038 0.2530 0.0050 0.0157 0.3399 0.0057 0.0158

Bupa 0.0040 0.0588 0.0042 0.0052 0.0849 0.0048 0.0057

Cancer 0.0055 0.1826 0.0056 0.0182 0.2129 0.0060 0.0183

Diabetes 0.0080 0.2132 0.0056 0.0183 0.2398 0.0061 0.0195

Haberman 0.0048 0.0522 0.0036 0.0049 0.0869 0.0039 0.0049

Heartstatlog 0.0031 0.0383 0.0030 0.0038 0.0612 0.0034 0.0038

WBC 0.0052 0.1835 0.0057 0.0182 0.2068 0.0063 0.0190

WDBC 0.0087 0.1531 0.0144 0.0224 0.1638 0.0154 0.0230

Bold font indicates the best result

the second hyperplane. The positive samples are marked with a blue “+” and the negative
samples with a red “×”. For the prediction results, the positive sample area is cyan and the
negative sample area is yellow. The two predicted sample areas are separated by green lines
in the middle, and the predicted sample distances on the line are equal to the two hyperplanes.
However, in the experiment, such sample points that are equidistant from two hyperplanes
are rarely seen. In an experiment, the prediction accuracy of the proposed algorithm on the
dataset Heartstatlog is 91.0448%, while that of SVM is 71.1045%. Therefore, it is proved that
TSVMPath has better classification accuracy than TSVM. Additionally, the cross-validation
results in Fig. 9 also show our superiority.

Figure 10 shows predicted accuracy on 8UCI datasets in Table 1, where Fig. 10a–h are dia-
grams of ten times predicted accuracies on 8 UCI datasets using different methods, in which
blue circle lines, orange square lines, yellow triangle lines, purple plus lines and green cross
lines, cyan plus lines and dark red pentagram lines are the prediction results of TSVMPath
(ours), grid search methods for TSVM, WLTSVM [36] and LSPTSVM [32], and non-grid
search methods for TSVM,WLTSVM [36] and LSPTSVM [32], respectively. Table 3 shows
the average accuracies on 8 UCI datasets using different methods. Our algorithm is not only
optimal in all the datasets, but also the prediction performance of our algorithm is stable, as
can be seen from the accuracy and standard deviation of 10 repeated experiments in Table 3.

From Fig. 10, both the grid search method and our solution path algorithm perform better
than the non-parametric adjustment method, which shows the effectiveness of the former. On
the datasets Blood, Bupa, Diabates, Haberman and Heartstatlog, TSVMPath
shows great performance advantages. However, there is still a huge space to improve the
performance on the other three datasets. We highlight that TSVMPath is a fast solution
path algorithm for TSVM without solving QPPs. Notably, it achieves the best prediction
performance, demonstrating the superiority of the proposed method.

7.2.4 Training Time Comparison

Table 4 shows the average training time comparison for 10 repeated experiments between the
proposed algorithm and the other methods on 8 UCI datasets. For the fairness of experiments,
we only count the average time to solve one programming problem. It can be seen that the
training time of our algorithm is lower than others on five datasets, including Blood, Bupa,
Cancer, WBC and WDBC. On the other three datasets, the training time of the proposed
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method is comparable to that of WLTSVM. Neither of them (TSVMPath and WLTSVM)
is solved by solving QPP, and the training time is shorter than that by solving QPP for
TSVM. For example, the average time to adjust a parameter for TSVMPath is 0.0038s on
the Blood dataset and 0.2530s with QPP for TSVM. Therefore, the significant advantage
of our algorithm is the short training time for each solution, compared with solving QPP for
TSVM.

7.2.5 Discussion

Computational Overhead For the grid search parameter optimization method, it is assumed
that the regularization parameter decreases from 1000 and the step rate is 0.1, so it needs to fit
TSVM2×108 times to obtain optimal regularization parameters. However, the time required
to fit a single TSVM using solving QPP will increase with the sample dimensions, as shown
in Table 4. For some samples with higher dimensions, the training time can even reach several
hours. The main factor restricting the efficiency of the algorithm is to solve the QPP problem.
Therefore, the times of solving QPPs can be used to measure the computational overhead of
the algorithm. Notably, the proposed algorithm is very effective without solving any QPP.
Compared with solving a QPP, the total time for solving TSVMPath is about the same.
However, the computational overhead of the grid search method increases exponentially
with the adjustment of iteration step size and the change of initial point. As a result, grid
search often cannot traverse the whole parameter space, resulting in suboptimal solutions.
Notably, the proposed algorithm can sharply reduce the computational overhead of the grid
search method without solving QPPs, and fully obtain the optimal solution by finding the
break point based on the piecewise linear theory.
Time Complexity Since Algorithm 1 needs to solve linear equations of size nB , its time com-
plexity isO(n2B) at least. According to Hastie et al. [10], the time complexity of Algorithm 2
isO(cn2Bm + nBm2), where m is the average size of E and c is a small number. In summary,
the time complexity of the whole algorithm is proportional to the square of the data size.
Additionally, the total computation burden of the entire solution path algorithm is similar to
that of a single TSVM fit. For the grid search method, we need to fit the TSVM ngrid times,
and the corresponding time complexity is also ngrid times of TSVM fits, where ngrid is the
granularity of the grid, e.g., ngrid is equal to 2 × 104 as analyzed above in this paper. There-
fore, the solution path algorithm can greatly reduce the computational burden of parameter
adjustment, with up to four orders of magnitude speed-up for the computational complexity
compared with the grid search method.

8 Conclusion

In this paper, we develop a novel parameter tuning algorithm for TSVM. Two sub-
optimization problems of TSVM are first transformed and the training samples are divided
into different index sets. It is proved that the Lagrangian multiplier is piecewise linear w.r.t.
the regularization parameter accordingly. Simulation results of 8 UCI datasets show that
the Lagrangian multipliers in the two sub-models are piecewise linear w.r.t. regularization
parameters, which lays a foundation for the further selection of regularization path algorithm
andmakes TSVMhave stronger generalization performance. Experiments show that both the
prediction accuracy and the training speed of TSVMPath are superior to that of the state-of-
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the-art methods. Notably, since there is no need to solve QPPs, our computational overhead
is greatly reduced compared with the grid search method.

In the future, the solution path algorithm for TSVM will be extremely generalized by
extending the solution path algorithm of TSVM to multi-classification and nonlinear prob-
lems.
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A Proof of Theorem 2

Proof The following is to prove Theorem 2, i.e., the Lagrangian multipliers γi are piecewise
linear w.r.t. the regularization parameter λ2.
According to Eq. 23, its lth step function can be obtain

f l2(x) = 1

λl2

[
xT 1

] (
QTQ + δI

)−1
PTγ l . (56)

From Eq. 23 and Eq. (56), it is easy to obtain

f2(x) = λl2

λ2
f 21 (x) + f2(x) − λl2

λ2
f l2(x)

= 1

λ2

[
λl2 f

l
2(x) − [

xT 1
] (
QTQ + δI

)−1
PT

(
γ l − γ

)]
. (57)

For ∀i ∈ A, there are three special scenarios without considering any possible events, i.e.,

• If i ∈ Ll
A, then γi = γ l

i = 1.
• If i ∈ E lA, then f2(x) = f l2(x) = 1.
• If i ∈ Rl

A, then γi = γ l
i = 0.

Therefore, Eq. (57) can be simplified

Pl
E

(
QTQ + δI

)−1
(
Pl
E

)T (
γE

l − γ E

)
= B̄l

(
γE

l − γ E

)

=
(
λl2 − λ2

)
enlA

.

(58)

If B̄l is invertible, the we can obtain

γ E = γ l
E −

(
λl2 − λ2

) (
B̄l

)−1
enlA

= γ l
E −

(
λl2 − λ2

)
ϑ l .

(59)

To sum up, Theorem 2 is proved. �
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