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Figure 1: Object grasping in a simulated microgravity environment: (a) depicts a session where the object remains ungrasped; (b)
and (c) show sessions where the object is successfully grasped. The highlighted hand avatar offers visual feedback upon contact.

ABSTRACT

As human exploration of space continues to progress, the use of
Mixed Reality (MR) for simulating microgravity environments and
facilitating training in hand-object interaction holds immense prac-
tical significance. However, hand-object interaction in microgravity
presents distinct challenges compared to terrestrial environments
due to the absence of gravity. This results in heightened agility
and inherent unpredictability of movements that traditional meth-
ods struggle to simulate accurately. To this end, we propose a
novel MR-based hand-object interaction system in simulated mi-
crogravity environments, leveraging physics-based simulations to
enhance the interaction between the user’s real hand and virtual ob-
jects. Specifically, we introduce a physics-based hand-object inter-
action model that combines impulse-based simulation with pene-
tration contact dynamics. This accurately captures the intricacies of
hand-object interaction in microgravity. By considering forces and
impulses during contact, our model ensures realistic collision re-
sponses and enables effective object manipulation in the absence of
gravity. The proposed system presents a cost-effective solution for
users to simulate object manipulation in microgravity. It also holds
promise for training space travelers, equipping them with greater
immersion to better adapt to space missions. The system reliabil-
ity and fidelity test verifies the superior effectiveness of our system
compared to the state-of-the-art CLAP system.

Index Terms: Human-centered computing—Human computer
interaction—Interaction paradigms—Mixed/augmented reality

1 INTRODUCTION

As manned spaceflight technology continues to advance, an in-
creasing number of individuals are embarking on space exploration
journeys. Whether on Earth or in the vast expanse of space, hu-
man hands play a vital role in our daily lives, enabling us to interact
with our environment and manipulate objects [1]. However, it is
important to recognize that there are notable disparities in the per-
ception of self-motion during hand-object interaction between the
gravitational environment of Earth and the microgravity conditions
experienced in space. This dissimilarity arises due to a phenomenon
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known as sensory conflict [2], where the interpretation of cues, par-
ticularly from the vestibular system, is altered when transitioning
from a microgravity environment back to Earth. Therefore, it is
necessary for space travelers to conduct extensive and specialized
training prior to their space missions, which facilitates their rapid
adaptation to the unique conditions of microgravity.

Traditional microgravity simulation methods [3, 4, 5], such as
parabolic flights and neutral buoyancy tanks, have inherent limi-
tations in accurately replicating the full experience of microgravity.
These methods provide only partial weightlessness and struggle to
recreate the complex environmental factors encountered in space.
Moreover, the accessibility of these methods is restricted, making
them less practical and costly for training purposes. To overcome
these drawbacks, virtual/augmented/mixed reality (VR/AR/MR)
technology has emerged as a promising solution for hand-object
interaction in microgravity. Particularly, MR offers distinct advan-
tages that address the limitations of traditional methods. It provides
a more realistic and immersive training experience that closely re-
sembles microgravity conditions. Additionally, MR-based train-
ing [6, 7] is more accessible, cost-effective, and versatile compared
to traditional microgravity simulations.

In this work, we propose a novel hand-object interaction sys-
tem for simulated microgravity environments. This allows the pub-
lic to experience space-based manipulation using visual feedback,
bypassing the need for force feedback devices. Importantly, our
system can refine space travelers’ perception of their own motion,
aiding them in navigating the sensory challenges induced by micro-
gravity. Utilizing MR technology, the system simulates genuine mi-
crogravity hand-object interaction. This immersive method ensures
space travelers rapidly adapt to microgravity for space missions.

Achieving a realistic sense of interaction between the real hand
and virtual objects is a multi-faceted challenge that involves accu-
rate hand gesture tracking and enabling the virtual hand to effec-
tively interact with virtual objects. The former can be addressed
using various hardware devices and algorithms [1, 8]. In this work,
we employ the Leap Motion device [9] to capture the movements
of users’ hands and generate corresponding virtual hand representa-
tions. The latter, enabling the real hand to penetrate virtual objects
in a realistic and natural manner seamlessly, is a more complex
challenge. It stems from the inherent disparities between phys-
ical and virtual objects and the necessity to ensure coherent and
intuitive interactions between them. To overcome this obstacle, re-
searchers actively explore approaches in advanced physics-based
simulations [10, 11] and visual systems [12, 13]. Considering the
advantages of being able to accurately model the physical prop-



erties and behaviors of virtual objects, we specifically focused on
leveraging physics-based simulations to enhance hand-object inter-
action in virtual environments.

Hand-object interaction in microgravity presents unique chal-
lenges compared to interactions in terrestrial environments due to
the absence of gravitational forces. In microgravity, objects ex-
hibit remarkable agility and present manipulation challenges during
interactions, particularly in scenarios involving subtle tapping and
forceful slapping. This poses a limitation for existing physics-based
methods [10, 11] that rely on penetration force calculations after
hands are inserted into objects, making them less effective in simu-
lating such interactions. To address this, we propose a new physics-
based hand-object interaction model that merges an impulse-based
simulation with penetration contact dynamics. The impulse-based
approach models instantaneous momentum changes during con-
tact interactions, precisely capturing the dynamics of microgravity
hand-object interaction. By accounting for the forces and impulses
during contact, our model achieves realistic collision responses and
object manipulation without gravity. This method allows for a nu-
anced simulation of hand-object interaction in microgravity, yield-
ing a more immersive and accurate virtual experience. By address-
ing unique challenges in microgravity, our approach surpasses tra-
ditional physics-based models, offering a specialized solution for
realistic interactions in microgravity.

We have conducted a reliability and fidelity test to evaluate the
effectiveness of our system. The results highlight that participants
perceived our system as more natural and realistic than the state-
of-the-art system, CLAP. They reported an enhanced sense of im-
mersion and described the interactions as richer and more engag-
ing. Such feedback underscores our method’s ability to amplify the
overall user experience, offering a more accurate representation of
hand-object interaction in microgravity. Moreover, we undertook
quantitative assessments by timing task completions and tallying
failed operations during training. These metrics offered concrete
insights into our system’s performance. Collectively, these evalua-
tions corroborate the efficacy of our approach.

The main contributions are summarized as follows:

• The design and development of a novel MR-based hand-
object interaction system in microgravity environments, pro-
viding a cost-effective solution to experience object interac-
tion in microgravity through visual feedback.

• The proposal of a physics-based hand-object interaction
model that combines impulse-based simulation with penetra-
tion contact dynamics, accurately capturing the dynamics of
hand-object interaction in microgravity and enabling realistic
collision responses and object manipulation in microgravity.

• The evaluation of the proposed MR-based hand-object inter-
action system through a reliability and fidelity test, demon-
strating its effectiveness in providing a more realistic and nat-
ural experience compared to the state-of-the-art.

2 RELATED WORK

This section begins with an overview of microgravity simulation
techniques, followed by an introduction to hand-object interaction.

2.1 Microgravity Simulation
Simulating microgravity, which is experienced in space environ-
ments, is crucial for training space travelers and studying the ef-
fects of weightlessness on human activities [5, 7]. According to
the microgravity simulation support facility of NASA [14], various
traditional microgravity simulation methods have been utilized to
replicate partial weightlessness on Earth.

Among them, parabolic flights and neutral buoyancy tanks are
two commonly used methods. Parabolic flights [15,16] involve spe-
cially designed aircraft flying in a parabolic trajectory. During the

upward portion of the trajectory, the aircraft experiences a period
of freefall, creating a brief sensation of weightlessness for passen-
gers on board. While parabolic flights offer valuable firsthand ex-
periences of microgravity, they are limited by the short duration of
weightlessness and the logistical challenges associated with con-
ducting experiments in flight. Neutral buoyancy tanks [17, 18], on
the other hand, provide an environment that mimics the feeling
of weightlessness by using water to counteract buoyancy forces.
Space travelers and researchers can perform tasks and experiments
in the water, experiencing a reduced sense of gravity. However,
neutral buoyancy tanks have their limitations, including the neces-
sity of bulky equipment and the inability to replicate certain aspects
of the space environment, such as the absence of air resistance.
While these methods offer some level of simulation, they fall short
of reproducing the full experience of microgravity and replicating
the complex environmental factors encountered in space. Addition-
ally, they are often limited in accessibility and cost, making them
less practical for extensive training purposes.

2.2 Hand-Object Interaction
Hand-object interaction is a fundamental aspect of MR experiences,
as it enables users to engage with and manipulate virtual objects in
a more intuitive and immersive manner [19]. We will provide an
overview of the advancements made in enhancing hand-object in-
teraction in MR from two perspectives: hand perception techniques
and interaction relationship reasoning.

Hand Perception Technique According to the way user hand
perception is achieved, these methods can be categorized into
tracking-based methods and controller-based methods.

On the one hand, tracking-based methods [10, 20, 21, 22, 23] uti-
lize technologies such as motion capture or depth sensing to accu-
rately track and interpret the movements and gestures of the user’s
hands in real-time response. The Leap Motion device is often uti-
lized for hand-object interaction due to its high accuracy and preci-
sion in tracking hand movements and gestures. Delrieu et al. [23]
utilized the Leap Motion device to establish a connection between
a virtual hand and a tracked hand, enabling grasping assistance
through the implementation of virtual springs. Our approach also
leverages the Leap Motion device for tracking human hands. Fur-
thermore, Zhou et al. [1] utilized the Microsoft HoloLens 2 to track
human hands, enabling robust hand manipulation in MR. These
methods allow for more natural and intuitive interaction with vir-
tual objects, as the user’s hand movements are directly translated
into corresponding actions within the virtual environment.

On the other hand, controller-based methods [24, 25] rely on
handheld input devices or controllers that provide a means for users
to interact with virtual objects. Oprea et al. [25] presented a grasp-
ing system that leverages headset tracking and motion controllers,
allowing a human operator to embody virtual human or robot agents
and freely navigate and interact with objects in virtual environ-
ments. The system is capable of handling various object geometries
without the need for predefined grasp animations, automatically fit-
ting the fingers to object shape and geometry. Additionally, Han
et al. [24] utilized Oculus Quest 2 head-mounted displays and VR
controllers to enable users to manipulate objects with dexterity in
virtual environments. By mapping the MR controller to the vir-
tual hand and using a deep neural network, the system synthesized
dynamic hand motions and joint orientations for a realistic and im-
mersive hand-object interaction experience. While these methods
can offer precise control, they may lack the level of realism and
naturalness achieved by tracking-based methods.

To avoid the limitation of controller-based methods, we incor-
porate tracking-based techniques to achieve more natural and re-
alistic free-hand perception [26], allowing for natural interactions
with virtual objects. Our system enhances the user experience by
providing highlighting hand avatars upon contact.



Interaction Relationship Reasoning According to interac-
tion relationship reasoning, these methods can be broadly catego-
rized into physics-based and learning-based methods.

On the one hand, physics-based methods [10,20,23,27] in hand-
object interaction relationship reasoning focus on modeling the
physical properties and behaviors of objects and hands. These
methods typically involve applying principles of physics, such as
Newtonian mechanics and rigid body dynamics, to simulate real-
istic interactions between the hand and objects. They aim to ac-
curately represent the forces, collisions, and constraints involved
in hand-object interaction, providing a physically grounded sim-
ulation of the interaction dynamics. Höll et al. [10] employed
the Coulomb friction model to identify contact points between the
user’s real hand and virtual objects in order to simulate various ac-
tions, including pushing, pulling, grasping, and dexterous manip-
ulations. Furthermore, several previous works [28, 29] have em-
ployed a distance field to represent the spatial relation between a
hand and an object, enabling accurate calculations of the proximity
between the hand and object, and facilitating realistic hand-object
interaction and manipulation. These methods require a comprehen-
sive understanding of the physical properties of objects and hands
and often involve complex calculations and simulations.

On the other hand, learning-based methods [12, 24, 30, 31, 32]
for hand-object interaction relationship reasoning leverage machine
learning and artificial intelligence techniques to infer and reason
about the interaction between hands and objects. These methods
involve training models on large datasets of hand-object interaction
to learn patterns, relationships, and context-aware information. Fan
et al. [12] proposed a large-scale dataset to bridge the gap between
human and machine understanding of hand-object interaction. It
supports consistent motion reconstruction and interaction field esti-
mation, aiming to reconstruct and estimate spatial-temporally con-
sistent hand-object interaction. Deep learning, reinforcement learn-
ing, and other learning algorithms can capture the complex and sub-
tle aspects of hand-object interaction [33,34]. Streli et al. [30] intro-
duced a data-driven method to detect finger pinching for off-screen
selection events. It enhances the interaction by incorporating a hap-
tic actuator in their wrist device, providing users with tactile feed-
back to confirm their selections and enabling them to interact with
virtual content through actions like selecting, grabbing, and drop-
ping. Moreover, Han et al. [24] incorporated reinforcement learn-
ing to build a visually and physically plausible hand manipulation
system. While learning-based methods allow for more flexible and
context-aware interaction behaviors, the need for extensive training
data makes it challenging to generalize well to new objects or sce-
narios that were not included in the training set. Additionally, they
may struggle with capturing complex and subtle aspects of hand-
object interaction, as it can be difficult to represent and model all
the intricate dynamics and constraints involved.

Our work addresses the constraints of learning-based methods in
hand-object interaction by leveraging the advantages of physics-
based techniques. Through developing a novel physics-based
method, we can achieve more realistic and accurate simulations of
hand-object interaction in virtual settings, thus elevating the fidelity
and authenticity of interactions within MR.

3 METHODOLOGY

In this section, we first provide an overview of the entire framework.
Subsequently, we introduce the key phases of the system.

3.1 Framework Overview
The pipeline of our system is shown in Fig. 2. It consists of three
key components: (a) a hand tracking module for capturing and
tracking hand movements, (b) a collision detection module to detect
interactions between the hand and objects, and (c) an interaction re-
lationship reasoning module to simulate natural interaction.

Hand tracking

Collision
detection

Non-collision

Superposition

Collision Pose calibration

Force calculation

Penetration

Leap Motion

Rendered hand
Tracked hand

Object

Force
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Visual rendering
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Figure 2: The pipeline of our system: (a) hand tracking, (b) collision
detection, and (c) interaction relationship reasoning.

Through a simple yet effective window filtering method, the
hand tracking module can precisely capture hand movements in
microgravity, enabling stable object manipulation. In micrograv-
ity, the dynamics of hand-object interaction deviate notably from
those in gravity-based scenarios. The collision detection module
is tailor-made to accommodate these distinct dynamics posed by
microgravity, ensuring precise detection of contact and collisions
between the hand and virtual objects. This leads to realistic and
consistent interactions, even without gravitational forces. The in-
teraction relationship reasoning module factors in the specific char-
acteristics of hand-object interaction in microgravity. Incorporat-
ing impulse-based simulation, it examines the spatial relationships,
contact points, and the involved forces. This permits intelligent rea-
soning and informed decision-making. Consequently, the system
can adeptly adapt and offer a more intuitive and responsive interac-
tion experience in microgravity settings.

Incorporating these modules within a microgravity context paves
the way for groundbreaking hand-object interaction. Users can un-
dertake various tasks, such as assembling components, handling
equipment, and running experiments, which are peculiar to micro-
gravity environments. This system presents a genuine and efficient
platform for the microgravity experience.

3.2 Hand Tracking

Palm
Wrist

Pinky
Ring

Middle Index

Thumb

Figure 3: The visualiza-
tion of the hand skeleton
tracked by Leap Motion.

In microgravity environments,
accurate tracking of hand poses
and movements is essential for
hand-object interactions. The
Leap Motion device is selected
due to its advanced algorithms,
which offer precise hand track-
ing. This allows users to inter-
act with virtual objects using nat-
ural hand movements, eliminat-
ing the need for extra sensors or
equipment. The device records
the hand’s positions, orientations,
and movements, providing a de-
pendable basis for simulating in-
teractions between hands and vir-
tual objects. The hand skeleton,
depicted in Fig. 3 and comprising five fingers, a palm, and a wrist,
is monitored by the Leap Motion device.

In this work, we find that the lack of gravitational forces in mi-
crogravity exacerbates the impact of noise on hand-object interac-
tion. Small disturbances and noise can significantly affect hand
movements and object interactions, posing challenges in grasping
and manipulating objects accurately. As shown in Fig. 4(a), the tra-
jectory of the hand exhibits initial fluctuations due to noise but re-
mains able to grasp the object. However, over time, the movement
becomes increasingly unstable, requiring constant adjustments to
maintain the grip. This negatively impacts the user experience.

To address the issue of unreliable raw data and potential hand
shaking during prolonged operation in microgravity environments,
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Figure 4: The visualization of motion trajectories of two manipula-
tion experiments under different conditions: (a) the original without
filtering and (b) our method using the filtered strategy.

we have employed a simple yet effective window filtering strategy,
which can be methodically represented as:

xi =
1

F

F∑
f=0

xi−f , (1)

where F is the filter window size. In microgravity hand-object in-
teraction, balancing noise suppression and system responsiveness
is essential. Preliminary tests indicated that a small F inadequately
filtered system noise, producing jerky trajectories. Conversely, a
larger F introduced perceptible lag, risking real-time MR interac-
tions. Empirical evaluations revealed F = 3 as optimal, balancing
noise reduction and system reactivity.

This simple yet effective filtering method can boost both trajec-
tory stability and precision during hand-object interactions in mi-
crogravity. As illustrated in Fig. 4, the difference is clear: while
Fig. 4(a) displays an unfiltered trajectory wherein the user strug-
gles to manipulate an object to complete a specific task, Fig. 4(b)
presents a smoother, filtered version that allows the same user to
effortlessly finish the same task. With this approach, we guarantee
a stable and consistent user experience in microgravity, devoid of
the irregularities seen in unfiltered movements.

3.3 Collision Detection
In hand-object interaction, accurate collision detection is crucial for
determining the contact points between the tracked hands and the
virtual objects. This is essential to achieve realistic and natural in-
teractions, as it prevents the tracked hands from penetrating or in-
tersecting with the virtual objects. To accomplish this, we utilize
both tracked hands and rendered hands.

Tracked hands act as virtual counterparts of the user’s actual
hand within the virtual environment. They faithfully replicate the
movements and positions of the user’s real hand, ensuring seamless
integration between the physical and virtual realms. On the other
hand, rendered hands have the responsibility of providing users
with a natural and visually appealing representation of their hand
movements during interactions with virtual objects. By delivering
accurate visual feedback, rendered hands enhance the overall user
experience and contribute to the realism of the interaction.

The collision detection process determines if a collision has oc-
curred by comparing the position and orientation of the tracked
hands with the geometry of the virtual objects in the scene. For
the multipoint collision, it is essential to compute the single-point
collision independently for each contact point. Consequently, our
subsequent discussion focuses on the single-point collision. As de-
picted in Fig. 5, a single-point collision between the tracked hand
and the virtual object is illustrated, highlighting the contact point c.
From this, we can determine the contact normal vector n ∈ R3. For
objects with continuous smooth surfaces, the contact normal aligns
with the surface normal of both objects at the point c. In this sce-
nario, the surface normals of the two objects are parallel but point
in opposite directions.

Knowing the position and orientation of the tracked hand and the
virtual object, we can compute the contact points w.r.t. either one

Scene object
Tracked hand

Figure 5: The illustration of a single-point collision.

of these objects, i.e.,

c1 = c2, s.t.
{
c1 = r1 + o1

c2 = r2 + o2
, (2)

where the subscripts 1 and 2 refer to the tracked hand and the virtual
object, o is the position of the center of mass, and r represents a
vector from o to the contact position. Using the body frame BFi,
as outlined in the literature [35], we can rewrite ri as:

ri = Ri [ri]BFi
, (3)

where Ri is the rotation matrix of the body frame of i-the object.
Now, integrating Eq. (3) into Eq. (2), we obtain:

ci = Ri [ri]BFi
+ oi. (4)

If we differentiate Eq. (4) w.r.t. time, we get the contact velocity of
the contact point on body i, i.e.,

ċi = Ṙi [ri]BFi
+ ȯi. (5)

The columns of Ri are unit vectors along the axes of BFi, which
are body-fixed vectors. Consequently, we can write the time deriva-
tive of a body-fixed vector as the cross product of the angular ve-
locity ω and the body-fixed vector, i.e., Eq. (5) is reformulated as:

ċi = [ωi ×Rx
i |ωi ×Ry

i |ωi ×Rz
i ] [ri]BFi

+ ȯi

= ωi ×
(
Ri [ri]BFi

)
+ ȯi.

(6)

Next, we simplify Eq. (6) to obtain:

ċi = ωi × (Ri [ri]BFi
+ oi − oi) + ȯi

= ωi × (ci − oi) + ȯi

= ωi × ri + ȯi.

(7)

Now, we can calculate the relative contact velocity v in the nor-
mal direction between the tracked hand and the virtual object:

v = n> (ċ1 − ċ2) . (8)

The relative contact velocity tells us something about how the two
objects are moving relative to each other. Then, we know that:

1. If v > 0, a separating contact occurs, indicating that in the
future, regardless of the size of the time step we consider, the
objects will no longer be in contact at the contact point c.

2. If v = 0, a resting contact occurs, suggesting that the contact
point c will persist in the future regardless of how small a time
step we take.

3. If v < 0, a colliding contact occurs, implying that without
any counteraction, such as applying a collision impulse at the
contact point, the two objects will penetrate in the future re-
gardless of the size of the time step we consider.
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Figure 6: The illustration of the God-object approach.

When no collision is detected, the positions and orientations of
the tracked hand and the rendered hand remain consistent, indicat-
ing proper alignment between the two. However, if a collision is
detected, it indicates that the tracked hands have penetrated or inter-
sected with the virtual objects. This typically occurs when a point
on the tracked hand is closer to the surface of the virtual object than
a predefined threshold. In such cases, we find the closest 3D point
on the object’s surface to the contact point.

One challenge we face is updating the contact points during ob-
ject interaction, particularly when there is slippage along the sur-
face of an object. To address this, we employ the God-Object ap-
proach [36, 37], a well-known method for updating contact points
on the surface of objects. This involves treating the virtual object as
a single cohesive entity, referred to as the God-Object, and updat-
ing the contact points based on the interactions between the hand
and this virtual entity. As shown in Fig. 6, the tracked hand is expe-
riencing penetration with the virtual object, whereas the rendered
hand remains outside of the object. To facilitate this interaction,
each tracked finger is associated with a target object per phalanx,
while the corresponding rendered finger is represented by a single
God object per phalanx. The contact point between the rendered
hand and the virtual object enables the computation of direct ma-
nipulation, allowing actions such as pushing the object downwards
or exerting force in a specific direction. When there is no contact
between the user’s hand and the virtual object, no force is applied,
and movements are determined by the user’s intention. However,
upon contact, two key factors need to be considered for visual ren-
dering: the depth of penetration of the hand into the object and the
specific dynamics required to simulate the interaction accurately.
By using the God-Object approach, we can accurately track and
update the contact points, ensuring realistic and responsive hand-
object interaction within the virtual environment.

3.4 Interaction Relationship Reasoning

In microgravity environments, the traditional penetration contact
dynamics approaches [10, 11, 38] that primarily focus on collision
detection and response when objects intersect or overlap, may not
be suitable for accurately simulating nuanced hand-object interac-
tion. In such environments, where the effects of gravity are minimal
or absent, the concept of objects penetrating or intersecting with
each other loses its significance. Additionally, penetration-based
dynamics may not capture the subtleties of hand-object manipula-
tion in microgravity, such as objects sliding or rotating along the
hand surface without separation. These limitations can result in un-
realistic simulation results and a reduced sense of immersion. To
address them and achieve realistic hand-object interaction in mi-
crogravity, we incorporate the impulse along with penetration con-
tact dynamics. The impulse-based method focuses on simulating
the exchange of impulses between objects during collisions, rather
than relying solely on the concept of penetration and separation. By
considering the transfer of momentum and forces between the hand
and the object, we can accurately simulate nuanced hand-object in-

teraction in microgravity.
In this work, we follow a two-phase process to simulate hand-

object interaction. The first phase is the impulse phase, as described
in Sect. 3.4.1, where we utilize an impulse-based method when the
real hand contacts the virtual object. This phase focuses on calculat-
ing and applying appropriate impulses to model the initial impact
and response of the interaction. Once the impulse phase is com-
pleted, we transition to the second phase, known as the penetration
phase, as outlined in Sect. 3.4.2. In this phase, we incorporate pen-
etration contact dynamics to handle the ongoing contact forces and
interactions between the hand and the object. This includes consid-
ering factors such as friction, stability, and the prevention of object
penetration. This comprehensive approach enables us to achieve a
realistic and immersive simulation of hand-object interaction within
the unique environment of microgravity.

3.4.1 The Impulse Phase
In our study, we specifically focus on the colliding case and aim to
apply a collision impulse to a single point of contact before penetra-
tion occurs. This is crucial for enhancing the interaction response
in microgravity environments. To achieve this, we utilize Newton’s
collision law [39] as a foundation for implementing the collision
impulse. By incorporating this law, we can accurately calculate and
apply the necessary impulse to prevent penetration and simulate re-
alistic collision behavior during hand-object interaction.

First, we assume that the collision impulse is parallel with the
n-axis. Then, we can obtain:

J = jn, (9)

where j is the magnitude of the collision impulse. We will also as-
sume that only the relative contact velocity in the normal direction
changes. Newton’s impact law defines a simple linear relation be-
tween the initial relative contact normal velocity, uinit, and the final
relative contact normal velocity, ufinal,

ufinal = −ε · uinit, (10)

where ε is the normal restitution coefficient with values limited to
the interval (0, 1). The restitution coefficient can be thought of as
a measure of bounce. So the change in relative contact velocity in
the normal direction can be written as:

∆u · n = ufinal − uinit

= −ε · uinit − uinit

= −(1 + ε)uinit · n,

(11)

where uinit can be estimated by using Eq. (8). According to the
impulse-based momentum relation [35], we have:

∆u = Kjn, (12)

where K is the collision matrix that is determined by the mass of
the objects. We are only interested in the normal direction, so we
take the dot product with the contact normal:

∆u · n = (Kjn) · n = n>Knj. (13)

Combining Eq. (11) and Eq. (13), we have

j =
−(1 + ε)uinit · n

n>Kn
. (14)

Thus, we can insert Eq. (14) into Eq. (9) to obtain the impulse J.
Second, we apply the impulse J to the virtual object, which

changes the linear velocity v with the amounts:

∆vobj = J/mobj, (15)

where mobj denotes the mass of the virtual object. Thus, we can
obtain the motion status of the virtual object.



3.4.2 The Penetration Phase

We utilize both the normal and tangential components of contact
force in hand-object interaction in the penetration phase. The con-
tact force for each phalanx in contact with an object is computed
and applied to the corresponding contact area. To account for sur-
face friction, we utilize the Coulomb friction model, which calcu-
lates tangential friction forces based on the tangential component of
contact forces. This model distinguishes between static friction and
dynamic friction. Static friction occurs at stable contact points with
a higher friction coefficient, while dynamic friction arises when ob-
jects are in relative motion, such as sliding along the surface of the
hand. The determination of friction type is based on a friction cone
criterion, allowing for accurate simulation of different frictional be-
haviors during hand-object interaction.

As shown in Fig. 6, the i-th contact point on the object’s surface
is denoted as ci. We use pk (k = 1, 2, · · · ,K) to denote the 3D
centroid of the k-th hand phalanx. There are K hand phalanxes
that are tracked by the Leap Motion device. Then, we can get the
contact force f cont

i by:

f cont
i = γ (ci − pk) , (16)

where we set γ = 100, as same as the previous work [10]. The
normal component f n-cont

i of f contact
i can be calculated as:

f n-cont
i =

(
f cont
i · ni

)
ni, (17)

where ni is the surface normal vector of the object mesh at the con-
tact point ci. Obviously, the tangential component f t-cont

i of f cont
i

can be represented as:

f t-cont
i = f cont

i − f n-cont
i . (18)

Next, we discuss how to determine the tangential force fT-cont
i ,

which depends on whether or not the contact force f cont
i is inside the

friction cone. The friction cone is defined by the Coulomb friction
model as a cone with the vertex corresponding to the contact point
and the axis along the surface normal ni. When the contact force
f cont
i is inside the friction cone, we have:

fT-cont
i = f t-cont

i , s.t.

{
f cont
i · ni > 0∥∥f t-cont

i

∥∥ ≤ µi

(
f cont
i · ni

)
,

(19)

where µi is the static friction coefficient at the surface location of
ci. Otherwise, fT-cont

i can calculated as:

fT-cont
i = φif

t-cont
i , (20)

where φi is the dynamic friction coefficient at the surface location
of ci. The coefficients φi, µi are set as same as the previous work
[10]. Finally, we apply the forces fT-cont

i , fT-cont
i and fT-cont

i .
The contact force plays a crucial role in allowing the object to

slide along the hand surface or, conversely, enabling a firm grasp by
counteracting gravity. The magnitude and direction of the contact
force determine these effects while considering the friction proper-
ties of the surface. By appropriately adjusting the contact force, we
can control the sliding or grasping behavior of the object, ensuring
a realistic and interactive hand-object interaction experience.

4 EXPERIMENTS

We present the implementation details of our system in a simulated
microgravity environment. We showcase the quantitative results
obtained from experiments and measurements, evaluating the effec-
tiveness of our approach compared with state-of-the-art approaches.
Finally, we present the system reliability and fidelity test.

(a)

1-th 2-th 3-th 4-th 5-th

(b)

1-th 2-th 3-th 4-th 5-th

(c)

1-th 2-th 3-th 4-th 5-th

(d)

1-th 2-th 3-th 4-th 5-th

Figure 7: Comparative visualizations of our method and CLAP [20].
(a) Ours: flat object grab, (b) CLAP: flat object grab, (c) Ours: slender
object grab, and (d) CLAP: slender object grab.

4.1 Implementation Details
We implemented our system on a laptop, which is equipped with an
11th Gen Intel(R) Core(TM) i7-11800H processor, operating at a
frequency of 2.30 GHz. It had a total memory capacity of 16.0 GB,
with 15.8 GB available for use. The system is built by Unity with
a Leap Motion device. These hardware and software components
provide the necessary computational power, graphics rendering ca-
pabilities, and MR interaction support to simulate and visualize the
hand-object interaction in our system effectively.

4.2 Comparisons with the State-of-the-Art
We evaluate the performance of our system by comparing it to an
open-source state-of-the-art CLAP system [20] in grasping two dif-
ferent cuboid-shaped objects, as illustrated in Fig. 7. The figure
presents five frames from each method, depicting various stages of
the task execution from left to right. This analysis enables us to
evaluate the efficacy and robustness of our system in comparison
to CLAP. For a comprehensive view of the entire procedure, please
refer to the provided supplementary video.

When assessing the capability of our system in grasping a slen-
der object (Fig. 7(c)) against that of the flat object (Fig. 7(a)), it’s
evident that the slender object presents more challenges. The ex-
tended form and dimensions of this elongated cuboid necessitate
heightened precision in hand movements and coordination for ef-
fective grip and manipulation. Furthermore, its slim profile aug-
ments the potential for collisions with other virtual entities or sur-
faces, emphasizing the need for meticulous navigation and maneu-
vers. Contrasting with a prior study [20] illustrated in Figs. 7(b)
and 7(d), our approach showcases enhanced efficacy, adeptly han-
dling both objects. This underscores our system’s proficiency in
navigating the intricacies linked to manipulating elongated cuboid
items in simulated microgravity settings.

Furthermore, our system accommodates a range of hand-object
interaction techniques, such as ball grasping, cube grasping, ball
catching, pinching (securing a slender object using limited fingers),
lifting (gripping an object and elevating it), and gently nudging ob-
jects, as depicted in Fig. 8. Our conducted tests underscore the user-
friendly nature of our approach, with participants adeptly complet-
ing all tasks, affirming the method’s efficacy. Such a diverse array
of interaction techniques not only equips users with hands-on ex-
perience but also bolsters proficiency in manipulating tasks within



(a) Cylinder grab (b) Cylinder lift (c) Cylinder pinch

(d) Cube push (e) Cuboid grab (f) Cube grab

Figure 8: The visualization of diverse hand-object interaction demos. Our system supports a wide range of hand-object interaction actions,
accommodating various object shapes and manipulation tasks.

(a) (b) (c) (d)

Figure 9: The visualization of different task procedures: (a) the initial
scene, (b) the first place, (c) the second place, and (d) the third place.

simulated microgravity contexts. This prepares them more effec-
tively for tangible space expeditions.

4.3 Reliability and Fidelity Test
To address the constraints inherent to authentic microgravity envi-
ronments and the limited availability of astronauts, our work pri-
marily concentrates on evaluating the system’s reliability and fi-
delity under standard gravitational conditions. This evaluation lays
the groundwork for training future astronauts for space missions.
Our test unfolds in two phases. Firstly, we argue that a dependable
training system should consistently guide beginners in refining their
skills. By comparing the performance of participants trained with
our system to those who were not, we can validate our system’s re-
liability. Secondly, we contrast user feedback from our system with
a state-of-the-art method to gauge our system’s simulation fidelity.

Apparatus and Participants All participants utilize the same
apparatus during the whole test, comprising a laptop equipped with
Unity and Leap Motion. Further details can be found in Sect. 4.1.

We have recruited 30 participants, including 20 males and 10 fe-
males aged between 18-30 (avg=23.63, std=3.44), with a diverse
age distribution. This selection ensures representation from a de-
mographic familiar with technology and adaptable to new inter-
faces. Among them, 3 participants are left-handed and the remain-
ing are right-handed. Regarding previous experience, 8 participants
have no experience with MR. This diverse group of participants is
selected to provide a comprehensive evaluation of our system. To
evaluate the training reliability of our system, we divided partici-
pants equally into two unbiased groups: the veteran (V) group and
the beginner (B) group, ensuring gender balance within each group.

Tasks During training, participants are required to do simple
manipulation operations to be familiar with the experimental con-

Intro

5 min

Training

8 min 12 min 12 min

Phase 1 Phase 2 Q&A

3 min

Figure 10: The visualization of the test procedure timeline.

ditions. During testing, participants are required to perform three
pick-and-place tasks on differently shaped objects. These objects
include a cube (C) shown in Fig. 8(f), a flat cuboid (F) shown in
Fig. 7(a), and a long cuboid (L) shown in Fig. 7(c). The order of
objects and their corresponding test order is determined through a
pseudo-random process to minimize transfer and learning biases.

To enhance external validity, each pick-and-place task consists
of three stages with diverse difficulty levels: manipulation, main-
tenance, and release. (1) In the manipulation stage, participants
pick up the target object from a specified position, as can be seen in
Fig. 9(a). (2) During the maintenance stage, they hold the target ob-
ject from first place to third place for a minimum duration of three
seconds, as Figs. 9(b) to 9(d). When the target object is reached
the corresponding place, the mark is highlighted and the timer is
triggered. (3) Finally, participants release or drop the object.

Evaluation Metrics To measure task completion performance
and user feedback, we use both quantitative and qualitative metrics.

Quantitatively, we measure the time taken to perform the task
and the number of attempts. Specifically, the dependent variables
are (1) task completion time and (2) the number of attempts (in-
stances where the object was dropped during manipulation).

Qualitatively, participants evaluate the system’s naturalness and
efficiency using an 11-point Likert scale. (1) The naturalness rating
gauges the extent to which the interaction mirrors real-world hand-
object manipulations, asking: “How natural did the sensation of the
average task completion experience feel? (0: Extremely unnatural,
10: Extremely natural)”. (2) The efficiency rating measures the
fluency and effectiveness of task performance, posing the question:
“How would you rate the efficiency of the average task completion
experience? (0: Extremely inefficient, 10: Extremely efficient)”.
These Likert-scale questions are adapted from [23].

Procedure The test procedure initiates with an orientation to
the objectives. Subsequently, participants are given comprehensive
instructions about the system and the manipulation tasks. During
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Figure 11: Bar plots of different objects and groups with respect to
(a) the number of attempts and (b) the task completion time (s).

the training phase, the V group engages in a training session with
our system, while the B group directly advances to the first stage.
In this initial stage, every participant leverages our system to tackle
three distinct tasks for each respective object. Key metrics, includ-
ing task completion time and the number of attempts, are docu-
mented to appraise the system’s efficacy. For the second stage, par-
ticipants interact with the state-of-the-art system for the purpose
of hand-object manipulation, serving as a benchmark. Next, par-
ticipants are required to fill out a form regarding the naturalness
and efficiency of the pick-and-place experience, rating them on an
11-point Likert scale. The procedure is encompassed within a 40-
minute bracket, detailed further in Fig. 10.

Effectiveness of System Reliability Fig. 11 shows the bar
plots, illustrating the impact of varying object types and participant
groups on the number of attempts, as well as task completion times
(s). An ANOVA has been carried out for every independent vari-
able. The significance levels are represented using stars: ‘*’ for
p < 0.05, ‘**’ for p < 0.01, and ‘***’ for p < 0.001. Signifi-
cantly, none of the variables violated the assumption of sphericity.
Given the multiple comparisons made, p-values from these compar-
isons underwent Bonferroni correction. This procedure strengthens
the validity of our results, especially when assessing performance
disparities across distinct variables. In Fig. 11(b), the post hoc anal-
ysis indicates a significant effect of the participant group on task
completion time (with p < 0.05). Notably, the B group’s comple-
tion time surpasses that of the V group. Even though the participant
group does not exhibit a marked influence on flat and long objects as
seen in Fig. 11(a), the B group’s attempts are approximately double
those of the V group. These observations highlight the reliability
of our system in assisting users with various object manipulations,
thereby showcasing the large potential for the effectiveness of the
training performance in microgravity. Moreover, Fig. 11 reveals
that users often face heightened challenges when endeavoring to
grasp flat or elongated objects. This is attributable to their mini-
mized grip contact area and difficulties in force distribution.

Effectiveness of the System Fidelity In this test, we continue
to use the state-of-the-art CLAP system [20] as our baseline, given
its robust performance. We comprehensively compare our system
with CLAP and the results are shown in Tab. 1 and Fig. 12. The data
from Tab. 1 suggests that our system is more operationally efficient,
characterized by reduced task completion time and attempts com-
pared to CLAP. Moreover, the ratings presented in Fig. 12 depict a
distinct disparity between the two systems in terms of naturalness
and efficiency. This difference underscores our system’s heightened
ability to offer users a more authentic sensation of hand-object in-
teraction compared to CLAP. These results underscore that our sys-
tem outperforms CLAP in delivering an enhanced user experience.
This further verifies our system’s fidelity for simulating hand-object
interaction and shows great potential in space mission training.
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Figure 12: The rating distribution plot of our system and CLAP [20].

Table 1: Comparative results between our system and CLAP [20].

Ours Time (s) # attempts CLAP Time (s) # attempts
51.7 ± 19.4 0.9 ± 0.3 101.6 ± 58.0 2.2 ± 2.9

5 CONCLUSIONS AND DISCUSSIONS

Our innovative MR-based system, incorporating impulse-based
simulation with penetration contact dynamics, effectively captures
the complex dynamics essential for a realistic simulation of hand-
object interactions in simulated microgravity environments. It not
only presents a cost-effective way for the general public to ex-
perience space object manipulation but also establishes a crucial
training tool for space travelers. Experimental results highlight the
advantages of our system over the state-of-the-art, showcasing the
potential in enhancing space mission preparedness. Despite these
contributions, several areas still require further exploration:

Reliance Solely on Visual Feedback The current rendition
of our system chiefly provides an immersive sensation via visual
feedback. Although this form of feedback has proven effective in
various scenarios, the intricacies of microgravity interactions em-
phasize the importance of tactile feedback. A lack of haptic feed-
back might impede the attainment of a truly immersive experience.
To address this limitation, future work should consider integrating
cutting-edge haptic rendering technologies, like the high-precision
tactile gloves referenced in the previous work [40], ensuring a more
genuine sensation of weightlessness.

Demographic Limitations in Testing The effectiveness of our
system, especially concerning space traveler training for special-
ized space missions, remains speculative given the scant astronaut
engagement in our work. Though the system is attuned to cater to a
wider audience for experiencing object manipulation in micrograv-
ity, there’s a potential oversight of the specific challenges astronauts
grapple with in authentic microgravity conditions. To enhance the
system’s fidelity and relevance, we aim to collaborate more inten-
sively with astronauts in future work, leveraging their firsthand in-
sights to fine-tune the system.

Real-Virtual Hand Incongruence In our system, the user’s
hands are represented using an MR skeletal model, which can po-
tentially lead to visual inconsistencies when juxtaposed with the
users’ actual hands. Such inconsistencies might diminish the over-
all immersion by causing perceptual discord. It’s crucial to ad-
dress these discrepancies to ensure a truly immersive experience.
Integrating high-fidelity rendering with tactile feedback can be in-
strumental in resolving these issues. Additionally, the infusion of
cognitive phenomena, exemplified by the “rubber hand illusion”,
and its associated synchronous stimuli could amplify the user’s per-
ceived agency over the virtual avatar.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
Foundation of China (Ref: 62272019, Liang), and also in part by
the EPSRC NortHFutures project (Ref: EP/X031012/1, Shum).



REFERENCES

[1] K. Zhou, Z. Cheng, H. P. Shum, F. W. Li, and X. Liang, “Stgae:
Spatial-temporal graph auto-encoder for hand motion denoising,” in
2021 IEEE International Symposium on Mixed and Augmented Real-
ity (ISMAR), pp. 41–49, IEEE, 2021.

[2] T. L. Lonner and T. K. Clark, “The efficacy of vr as a countermeasure
for astronaut motion sickness in post-flight water landings,” in 2023
IEEE Aerospace Conference, pp. 1–8, IEEE, 2023.

[3] T. Rybus and K. Seweryn, “Planar air-bearing microgravity simula-
tors: Review of applications, existing solutions and design parame-
ters,” Acta Astronautica, vol. 120, pp. 239–259, 2016.

[4] G. Albrecht-Buehler, “The simulation of microgravity conditions on
the ground.,” ASGSB bulletin: publication of the American Society for
Gravitational and Space Biology, vol. 5, no. 2, pp. 3–10, 1992.

[5] J. Regnard, M. Heer, C. Drummer, and P. Norsk, “Validity of micro-
gravity simulation models on earth,” American journal of kidney dis-
eases, vol. 38, no. 3, pp. 668–674, 2001.

[6] G. Vailland, L. Devigne, F. Pasteau, F. Nouviale, B. Fraudet, E. Leb-
long, M. Babel, and V. Gouranton, “Vr based power wheelchair sim-
ulator: Usability evaluation through a clinically validated task with
regular users,” in 2021 IEEE Virtual Reality and 3D User Interfaces
(VR), pp. 420–427, IEEE, 2021.

[7] R. Herranz, R. Anken, J. Boonstra, M. Braun, P. C. Christianen,
M. de Geest, J. Hauslage, R. Hilbig, R. J. Hill, M. Lebert, et al.,
“Ground-based facilities for simulation of microgravity: organism-
specific recommendations for their use, and recommended terminol-
ogy,” Astrobiology, vol. 13, no. 1, pp. 1–17, 2013.

[8] X. Zhou, Q. Wan, W. Zhang, X. Xue, and Y. Wei, “Model-based deep
hand pose estimation,” arXiv preprint arXiv:1606.06854, 2016.

[9] F. Weichert, D. Bachmann, B. Rudak, and D. Fisseler, “Analysis of
the accuracy and robustness of the leap motion controller,” Sensors,
vol. 13, no. 5, pp. 6380–6393, 2013.
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