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A B S T R A C T

The twin support vector machine and its extensions have made great achievements in dealing with binary
classification problems. However, it suffers from difficulties in effective solution of multi-classification and fast
model selection. This work devotes to the fast regularization parameter tuning algorithm for the twin multi-class
support vector machine. Specifically, a novel sample data set partition strategy is first adopted, which is the
basis for the model construction. Then, combining the linear equations and block matrix theory, the Lagrangian
multipliers are proved to be piecewise linear w.r.t. the regularization parameters, so that the regularization
parameters are continuously updated by only solving the break points. Next, Lagrangian multipliers are proved
to be 1 as the regularization parameter approaches infinity, thus, a simple yet effective initialization algorithm
is devised. Finally, eight kinds of events are defined to seek for the starting event for the next iteration.
Extensive experimental results on nine UCI data sets show that the proposed method can achieve comparable
classification performance without solving any quadratic programming problem.
1. Introduction

As a machine learning method for pattern classification, the well-
known support vector machine (SVM) by solving a quadratic pro-
gramming problem (QPP) has shown the great prospect and excellent
generalization performance after decades of evolutionary development
since it was proposed by Cortes and Vapnik (1995). Based on the
structural risk minimization principle and Vapnik–Chervonenkis di-
mensional theory in statistical learning theory, SVM has been widely
used in data mining (Luo et al., 2020; Vaidya et al., 2008), knowledge
discovery (Hsieh & Yeh, 2011; Zhang et al., 2014), clustering (Bai
et al., 2019; Lee & Lee, 2005) and other fields (Li et al., 2021; Sun,
2011; Sun & Xie, 2015; Sun et al., 2018; Xie & Sun, 2020; Yang
et al., 2015). To enhance its predictive performance and computational
efficiency (Hu et al., 2013), the twin SVM (TSVM) has been developed
by Khemchandani and Chandra (2007), which generates two non-
parallel hyperplanes where each class is close to one and away from
the other by solving a pair of smaller sized QPPs (Xie et al., 2018).

It is well-known that TSVM (Khemchandani & Chandra, 2007) is
initially designed for the binary classification problem. Since most
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real-life applications are related to multi-class classifications (Chen
& Wu, 2017) such as activity recognition, speaker identification and
text categorization, extending it to multi-classification problems is of
great significance. Based on this, researchers have proposed many
strategies, where ‘‘one-versus-one’’ (OVO), ‘‘one-versus-rest’’ (OVR) and
‘‘one-versus-one-versus-rest’’ (OVOVR) are three of the most commonly
used methods (KreBel, 1999; Wang & Zhang, 2021; Xie et al., 2013; Xu
et al., 2013). These different strategies have been reviewed by Ding
et al. (2019). For example, Xu et al. (2013) have proposed a multi-
class classification algorithm with the OVOVR structure and produced
better forecasting results than other strategies. Furthermore, some two-
class techniques are often not helpful when being directly applied
to the multi-class problem (Zhou & Liu, 2005), the OVOVR strategy
has received much attention (Pan et al., 2017; Pang et al., 2019,
2018). For example, Pan et al. (2017) have designed safe screening
rules for accelerating the classification of TSVM. To extend it to twin
multi-class SVM, Pang et al. (2018) have proposed a safe sample
elimination rule for accelerating the classification. These methods can
effectively accelerate the classification, whereas, efficiently obtaining
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the optimal regularization parameters is not involved. In this work,
we aim to explore the efficient model selection w.r.t. the regularization
parameters for twin multi-class SVM based on the OVOVR strategy.

To get the optimal regularization parameter, it is very time-
consuming for the traditional grid search method, especially for multi-
parameter models. Since Hastie et al. (2004) have proposed the entire
regularization path for SVM, exploring the solution path algorithm
has become one of the most efficient methods to handle the efficient
model selection problem for SVM and its extensions. As can be seen
in Hastie et al. (2004), the solution path algorithm aims to establish the
piecewise linear relationships between the regularization parameters
and the Lagrangian multipliers. Since then, researchers have also pro-
posed some methods to explore the solution path algorithm for TSVMs.
For example, a new solution-path approach for the pinball TSVM has
been proposed by Yang et al. (2018) and we also have proposed a
fast regularization parameter tuning algorithm for TSVM (Zhou et al.,
2022). However, the entirely regularized path algorithm for multi-class
problems is much more difficult due to their intrinsic complexity. Thus,
there have not been the entirely regularized solution path algorithm
for twin multi-class SVM with the OVOVR structure. The reason is that
the involved relationships between the regularization parameters and
Lagrangian multipliers are quite complex. On the one hand, a simple yet
effective initialization algorithm is hard to design. On the other hand,
there are many complicated cases to consider for the OVOVR structure,
so designing an efficient updating strategy is not easy. To address these
problems, we propose an efficient regularized solution path algorithm
for twin multi-class SVM.

In this work, twin multi-class SVM with the OVOVR strategy is
transformed into two sub optimization models and the corresponding
solution path algorithm is then proposed. Specifically, a novel sample
data set partition strategy is first adopted, which is the basis for the
model construction. Then, combining the linear equations and block
matrix theory, the Lagrangian multipliers are proved to be piecewise
linear w.r.t. the regularization parameters, so that the regularization
parameters are continuously updated by only solving the break points.
Next, Lagrangian multipliers are proved to be 1 as the regularization
parameter approaches infinity, thus, a simple yet effective initialization
algorithm is devised. Finally, eight kinds of events are defined to seek
for the starting event for the next iteration. Extensive experimental
results on several UCI data sets show that the proposed algorithm
can achieve comparable classification performance without solving any
quadratic programming problem. Code will be available at https://
github.com/ZhouKanglei/TwinMultiPath.

The main contributions of this work are summarized as follows:

1. A novel sample set partition strategy is adopted and the La-
grangian multipliers of the twin multi-class support vector ma-
chine are proved to be piecewise linear w.r.t. the regularization
parameters.

2. Eight kinds of events are defined and the entire solution path
algorithm is proposed, in which the regularization parameters
are continuously updated by only solving the break points.

3. Lagrangian multipliers are proved to be 1 as the regulariza-
tion parameter approaches infinity and a simple initialization
algorithm is presented, thus extending the search space of the
regularization parameter to (0,+∞).

The rest of this work is structured: Section 2 briefly reviews the
related work. Section 3 reviews the basic concept of TSVM. Details
of the solution path algorithm for TSVM are introduced in Section 4.
Section 5 shows a lot of experimental results. The conclusions of the
whole paper are drawn in Section 6.

2. Related work

In this section, we briefly review different TSVM extensions, multi-
classification strategies for TSVM and solution path algorithms, respec-
tively.
2

2.1. TSVM and extensions

In the last two decades, significant research achievements have been
made on TSVM, including the least squares TSVM (LSTSVM), weighted
TSVM (WTSVM), projection TSVM (PTSVM), etc.

In 2009, Kumar and Gopal (2009) have presented LSTSVM, which
introduces the concept of proximal SVM (PSVM) to the original prob-
lem of TSVM. Since only two linear equations are considered to obtain
the result, the solution speed is improved a lot instead of solving two
QPPs with constraints. Based on LSTSVM, many researchers have pro-
posed different improved versions (de Lima et al., 2018; Tanveer et al.,
2016; Xu et al., 2015). To solve the semi-positive definite problem
in LSTSVM, which only satisfies the empirical risk minimization, Tan-
veer et al. (2016) have designed a robust energy-based LSTSVM. This
method uses the energy model to solve the problem of imbalanced
sample data and overcomes the influence of outliers and noise. Xu
et al. (2015) have applied the prior structure information of the data to
LSTSVM and constructed the structural LSTSVM. Due to the inclusion of
data distribution information in the module, it has good generalization
performance and short time consumption.

In 2012, based on local information, Ye et al. (2012) have proposed
a WTSVM to alleviate the problem that similar information between
any two data points in the same class cannot be utilized in TSVM. To
reduce the influence of noise, Li et al. (2017) have proposed a new
weighting mechanism based on LSTSVM. Xu (2016) has developed K-
nearest neighbor (KNN)-based weighted multi-class TSVM, where the
weight matrix is introduced into the objective function to explore the
local information in the class, and two weight vectors are introduced
into the constraint condition to find the inter-class information.

In 2011, Chen et al. (2011) have proposed PTSVM. The idea is to
find two projection directions, each one corresponds to a projection
direction. The algorithm recursively generates multiple projection axes
for each class, which overcomes the problem of singular values and
improves the performance of the algorithm. Furthermore, Xie and Sun
(2014) have presented multi-view Laplacian TSVM by combining it
with semi-supervised learning. Tomar and Agarwal (2015) have pro-
posed the multi-class classification of LSTSVM by extending it to the
contract state of multi-class classification. Wang et al. (2018) have
developed an improved 𝜌-twin bounded SVM, which can effectively
avoid the problem of matrix irreversibility in solving dual problems and
has a strong generalization ability in processing large-scale data sets.

2.2. Multi-classification strategies

To generalize the standard TSVM to the multi-classification prob-
lems (Crammer & Singer, 2002; Weston & Watkins, 1999), researchers
have proposed many classification strategies such as OVO, OVR,
OVOVR, all-together, etc.

KreBel (1999) has adopted the OVO classification strategy to estab-
lish a classifier between any two categories of samples. For the sample
set with 𝐾(𝐾 ≥ 3) categories, 𝐾(𝐾−2)∕2 binary classification classifiers
need to be constructed. And the category of the sample is determined
according to its maximum vote (Hsu & Lin, 2002). Obviously, the dis-
advantage of this classifier is that the rest samples are not considered.
In 2008, Cong et al. (2008) combined the OVR strategy with TSVM
to achieve efficient speaker recognition. In 2013, Xie et al. (2013)
proposed a novel OVR TSVM for the multi-class classification problem
and analyzed its efficiency theoretically. For the OVR TSVM, by con-
structing 𝐾 binary classifiers, the 𝑖th sample and the remaining samples
can be distinguished by the 𝑖th classifier. For unknown samples, they
can be classified into the category with the maximum confidence w.r.t.
the decision function. However, this method ignores the class imbal-
ance problem. By combining the above strategies, the OVOVR TSVM,
termed as Twin-KSVC, is proposed by Xu et al. (2013), which can yield
better classification accuracy in comparison with other structures. Since
then, this OVOVR structure has attracted much attention by researchers
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(Pang et al., 2019, 2018; Xu, 2016). For example, Pang et al. (2018)
have designed a safe sample elimination rule to identify and delete
many redundant samples of all classes, so the scale of dual problems
can be reduced a lot. There are other ways (Ding et al., 2019; López
et al., 2016) to solve the multi-classification problem based on TSVM,
such as decision tree based TSVM (Sun et al., 2019), directed acyclic
graph based LSTSVM (Zhang et al., 2016), ‘‘rest-versus-one" strategy
based TSVM (Yang et al., 2013). By the way, these strategies can also
be applied in SVMs for solving the multi-classification problem. It is
noted that for SVMs, the all-together strategy (Weston & Watkins, 1999)
that cannot be ignored needs to consider only one optimization prob-
lem, whereas, it is much sophisticated for practical implementations
Crammer and Singer (2002).

In addition, some studies (Chen & Wu, 2017; Wang & Zhang, 2021)
for multi-class classification have also achieved considerable accuracy
performance. However, they have not focused on the regularization
parameter tuning. In this work, we highlight the fast regularization pa-
rameter tuning with comparable prediction performance. For example,
Chen and Wu (2017) require solving 𝐾 QPPs to obtain 𝐾 hyperplanes
for the multi-classification problem, while ours does not need to solve
any QPP.

2.3. Solution path algorithms

For the regularization parameter optimization problem, the tradi-
tional grid search method is very time-consuming (Pan et al., 2017).
Recently, many fast algorithms for regularized parametric solutions (Gu
& Sheng, 2017; Hastie et al., 2004; Huang et al., 2017; Ogawa et al.,
2013; Ong et al., 2010; Pan et al., 2017; Wang et al., 2006; Wang,
Yeung & Lochovsky, 2008; Wang, Zhu & Zou, 2008; Yang et al., 2018)
have been proposed.

By fitting each cost parameter and the entire path of the solution of
SVM, Hastie et al. (2004) have presented the regularized solution path
algorithm of SVM. Wang, Zhu and Zou (2008) have developed the hy-
brid huberized SVM by using the hybrid hinge loss function and elastic
network penalty, and developed an entire regularization algorithm for
the hybrid huberized SVM. Wang et al. (2006) have proposed a two-
dimensional solution path for support vector regression to accelerate
the process of parameter tuning. Wang, Yeung and Lochovsky (2008)
have designed the regression model of 𝜖-SVM, and proved that the so-
lution of the model was piecewise linear w.r.t. the parameter 𝜖. Ogawa
et al. (2013) reduce the cost of training by introducing safe screening
criteria into the parameter tuning process of SVM. In 2017, the safe
screening criteria of linear TSVM and nonlinear TSVM (Pan et al.,
2017) are proposed to accelerate the parameter tuning process when
multiple parameter models are included. In 2018, Yang et al. (2018)
have developed a new solution path approach for the pinball TSVM,
where the starting point of the path could be achieved analytically
without solving the optimization problem.

3. Problem and model

In this section, we first give the common notations with their
meanings. Then, we briefly review the foundation of Twin multi-class
SVM. Finally, the model transformation and the partition strategy w.r.t.
two sub-optimization problems are elaborated, respectively.

3.1. Notations

Unless otherwise specified in this work, the normal bold 𝐬𝐲𝐦𝐛𝐨𝐥
indicates the matrix or tensor, the italic bold 𝒔𝒚𝒎𝒃𝒐𝒍 indicates the
vector, the italic-only 𝑠𝑦𝑚𝑏𝑜𝑙 indicates the variable, and the normal
symbol indicates the constant. Furthermore, all the sets are represented
with the calligraphic font.

Given a training data set  = {(𝒙1, 𝑦1), (𝒙2, 𝑦2),… , (𝒙𝑛, 𝑦𝑛)}, where
𝒙 ∈ R𝑚 (𝑖 = 1, 2,… , 𝑛) are training instances and 𝑦 ∈ {1, 2,… , 𝐾} (𝐾 ≥
3

𝒊 𝑖
3) are the corresponding labels. For notation convenience, we denote
 and  as two different classes of samples selected from the data set
 , and the rest samples are denoted as . Furthermore, samples sets
,  and  are labeled as classes ‘‘+1’’, ‘‘−1’’ and ‘‘0’’, respectively.
Let 𝐀 ∈ R𝑛A×𝑚 = [𝒙⊤1 ;𝒙

⊤
2 ;⋯ ;𝒙⊤𝑛A ], 𝐁 ∈ R𝑛B×𝑚 = [𝒙⊤1 ;𝒙

⊤
2 ;⋯ ;𝒙⊤𝑛B ] and

𝐂 ∈ R𝑛C×𝑚 = [𝒙⊤1 ;𝒙
⊤
2 ;⋯ ;𝒙⊤𝑛C ] stand for the sample matrices consisting

of ,  and  respectively, where 𝑛 = 𝑛A + 𝑛B + 𝑛C.

3.2. Twin multi-class support vector machine

For the data set with 𝐾 classes, the twin multi-class support vector
machine needs to construct 𝐾(𝐾−1)∕2 binary classifiers, which separate
the two categories of samples  and  by seeking for two non-parallel
hyperplanes 𝑓1 ∶ 𝒙⊤𝒘1 + 𝑏1 = 0 and 𝑓2 ∶ 𝒙⊤𝒘2 + 𝑏2 = 0. The above
problem can be solved by the following two QPPs:

min
𝒘1 ,𝑏1 ,𝝃,𝝅

1
2
‖𝐀𝒘1 + 𝑏1𝒆𝑛A‖

2 + 𝑐1𝒆⊤𝑛B𝝃 + 𝑐2𝒆⊤𝑛C𝝅

s.t. − (𝐁𝒘1 + 𝑏1𝒆𝑛B ) + 𝝃 ≥ 𝒆𝑛B ,

− (𝐂𝒘1 + 𝑏1𝒆𝑛C ) + 𝝅 ≥ (1 − 𝜖)𝒆𝑛C ,

𝝃 ≥ 0𝒆𝑛B , 𝝅 ≥ 0𝒆𝑛C ,

(1)

and

min
𝒘2 ,𝑏2 ,𝜼,𝜻

1
2
‖𝐁𝒘2 + 𝑏2𝒆𝑛B‖

2 + 𝑐3𝒆⊤𝑛A𝜼 + 𝑐4𝒆⊤𝑛C𝜻

s.t. (𝐀𝒘2 + 𝑏2𝒆𝑛A ) + 𝜼 ≥ 𝒆𝑛A ,

(𝐂𝒘2 + 𝑏2𝒆𝑛C ) + 𝜻 ≥ (1 − 𝜖)𝒆𝑛C ,

𝜼 ≥ 0𝒆𝑛A , 𝜻 ≥ 0𝒆𝑛C ,

(2)

here 𝒆𝑛A ∈ R𝑛A , 𝒆𝑛B ∈ R𝑛B and 𝒆𝑛C ∈ R𝑛C are three unit vectors, and
1 ∈ R𝑚 and 𝒘2 ∈ R𝑚 are coefficient vectors, 𝑏1 ∈ R and 𝑏2 ∈ R are
ias parameters, and 𝝃 ∈ R𝑛B , 𝝅 ∈ R𝑛C , 𝜼 ∈ R𝑛A and 𝜻 ∈ R𝑛C are vectors

of slack variables.
The two-dimensional illustration of one combination (𝐾𝑖, 𝐾𝑗 ) for

twin multi-class support vector machine is schematically depicted in
Fig. 1. Both classes of samples are as close to the corresponding
hyperplane as possible and away from the other, and the remaining
samples  are mapped to the Region IV in Fig. 1 between the two
nonparallel hyperplanes.

3.3. Model transformation of the QPP (1)

Let 𝑐1 = 𝑐2 =
1
𝜆1

, then the QPP (1) can be simplified as

min
𝒘1 ,𝑏1 ,𝝃,𝝅

𝜆1
2
‖𝐀𝒘1 + 𝑏1𝒆𝑛A‖

2 + 𝒆⊤𝑛B𝝃 + 𝒆
⊤
𝑛C
𝝅

s.t. − (𝐁𝒘1 + 𝑏1𝒆𝑛B ) + 𝝃 ≥ 𝒆𝑛B ,

− (𝐂𝒘1 + 𝑏1𝒆𝑛C ) + 𝝅 ≥ (1 − 𝜖)𝒆𝑛C ,

𝝃 ≥ 0𝒆𝑛B , 𝝅 ≥ 0𝒆𝑛C .

(3)

The Lagrangian function of the QPP (3) can be constructed as

1 =
𝜆1
2
‖𝐀𝒘1 + 𝑏1𝒆𝑛A‖

2 + 𝒆⊤𝑛B𝝃 + 𝒆
⊤
𝑛C
𝝅

− 𝜶⊤[−(𝐁𝒘1 + 𝑏1𝒆𝑛B ) + 𝝃 − 𝒆𝑛B ]

− 𝜷⊤[−(𝐂𝒘1 + 𝑏1𝒆𝑛C ) + 𝝅 − (1 − 𝜖)𝒆𝑛C ]

− 𝜸⊤𝝃 − 𝝎⊤𝝅,

(4)

here 𝜶 ∈ R𝑛B , 𝜷 ∈ R𝑛C , 𝜸 ∈ R𝑛B and 𝝎 ∈ R𝑛C are the non-negative
agrangian multipliers vectors. Set the partial derivatives of Eq. (4)
.r.t. 𝒘1, 𝑏1, 𝝃 and 𝝅 to 0, we can obtain
𝜕1
𝜕𝒘1

=𝜆1𝐀⊤(𝐀𝒘1 + 𝑏1𝒆𝑛A ) + 𝐁⊤𝜶 + 𝐂⊤𝜷 = 0𝒆𝑚, (5)

𝜕1
𝜕𝑏1

=𝜆1𝒆⊤𝑛A (𝐀𝒘1 + 𝑏1𝒆𝑛A ) + 𝒆
⊤
𝑛B
𝜶 + 𝒆⊤𝑛C𝜷 = 0, (6)

𝜕1 =𝒆𝑛 − 𝜶 − 𝜸 = 0𝒆𝑛 , (7)

𝜕𝝃 B B
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Fig. 1. Two-dimensional illustration of one combination (𝐾𝑖 , 𝐾𝑗 ) for twin multi-class support vector machine: The solid red line and the purple one represent two hyperplanes
respectively; the red circle and the purple square represent two classes of samples, labeled as ‘‘+1’’ and ‘‘−1’’ respectively; the blue triangle belongs to the remaining classes,
labeled as ‘‘0’’. The region can be divided into four areas, i.e., Region I to IV respectively.
𝜕1
𝜕𝝅

=𝒆𝑛C − 𝜷 − 𝝎 = 0𝒆𝑛C . (8)

According to the Karush–Kuhn–Tucker (KKT) conditions, we have

𝜶⊤[−(𝐁𝒘1 + 𝑏1𝒆𝑛B ) + 𝝃 − 𝒆𝑛B ] = 0, (9)

𝜷⊤[−(𝐂𝒘1 + 𝑏1𝒆𝑛C ) + 𝝅 − (1 − 𝜖)𝒆𝑛C ] = 0, (10)

𝜸⊤𝝃 = 0, (11)

𝝎⊤𝝅 = 0. (12)

Combining Eqs. (5) and (6), we can obtain

𝜆1

[

𝐀⊤

𝒆⊤𝑛A

]

[

𝐀 𝒆𝑛A
]

[

𝒘1
𝑏1

]

+

[

𝐁⊤

𝒆⊤𝑛B

]

𝜶 +

[

𝐂⊤

𝒆⊤𝑛C

]

𝜷 = 0𝒆𝑚+1. (13)

Let 𝐅 = [𝐀, 𝒆𝑛A ], 𝐆 = [𝐁, 𝒆𝑛B ], 𝐇 = [𝐂, 𝒆𝑛C ] and 𝒖 = [𝒘1; 𝑏1]. The above
equation can be rewritten as

𝜆1𝐅⊤𝐅𝒖 +𝐆⊤𝜶 +𝐇⊤𝜷 = 0𝒆𝑚+1. (14)

From Eq. (13), the solution of the QPP (3) can be obtained when the
matrix 𝐅⊤𝐅 is invertible.

𝒖 = − 1
𝜆1

𝐅inv(𝐆⊤𝜶 +𝐇⊤𝜷), (15)

where 𝐅inv represents the inverse matrix of 𝐅⊤𝐅. Since the matrix 𝐅⊤𝐅
is always semi-positive definite, we add the regularization term 𝛿𝐈 to
avoid the ill-conditioning case in this work, where 𝛿 is a small positive
real number and 𝐈 is an identity matrix in R(𝑚+1)×(𝑚+1). Thus,

𝐅inv = (𝐅⊤𝐅 + 𝛿𝐈)−1. (16)

According to Eq. (15), the function 𝑓1 can be represented as

𝑓1(𝒙) = − 1
𝜆1

[

𝒙⊤ 1
]

𝐅inv(𝐆⊤𝜶 +𝐇⊤𝜷). (17)

3.4. Partition strategies of the QPP (3)

From Eq. (15), the Lagrangian multipliers 𝜶 and 𝜷 of the QPP (3)
correspond to the sample in  and , but not to that in . Hence, the
samples in  and  need to be divided.
4

Fig. 2. Partition of the sample set  for the QPP (3).

3.4.1. Partition strategy of samples in 

Combining the non-negative properties of Lagrangian multipliers
𝜶, 𝜸 with Eq. (7), it is easy to obtain 0𝒆𝑛B ≤ 𝜶, 𝜸 ≤ 𝒆𝑛B . According
to Hastie et al. (2004), by combining the constraint conditions in
Eqs. (5)–(8) and the KKT conditions in Eqs. (9)–(12) of the QPP (3),
we see that the sample 𝒙𝑖 (𝑖 ∈ ) can be discussed in three situations:
when −(𝒙⊤𝑖 𝒘1 + 𝑏1) < 1, 𝛼𝑖 = 1; when −(𝒙⊤𝑖 𝒘1 + 𝑏1) > 1, 𝛼𝑖 = 0; when
−(𝒙⊤𝑖 𝒘1 + 𝑏1) = 1, 𝛼𝑖 can lie between 0 and 1.

Therefore, the samples in  can be divided into three sets, i.e.,
1
B = {𝑖| − (𝒙⊤𝑖 𝒘1 + 𝑏1) < 1}, 1

B = {𝑖| − (𝒙⊤𝑖 𝒘1 + 𝑏1) = 1}, and
1

B = {𝑖| − (𝒙⊤𝑖 𝒘1 + 𝑏1) > 1}, as shown in Fig. 2.

3.4.2. Partition strategy for samples in 

Similar to Section 3.4.1, it is easy to see that the sample 𝒙𝑘 (𝑘 ∈ )
can be discussed in three situations: when −(𝒙⊤𝑘𝒘1 + 𝑏1) < 1− 𝜖, 𝛽𝑘 = 1;
when −(𝒙⊤𝑘𝒘1 + 𝑏1) > 1 − 𝜖, 𝛽𝑘 = 0; when −(𝒙⊤𝑘𝒘1 + 𝑏1) = 1 − 𝜖, 𝛽𝑘 can
lie between 0 and 1.

Therefore, the samples in  can be divided into three sets, i.e.,
1
C = {𝑘| − (𝒙⊤𝑘𝒘1 + 𝑏1) < 1 − 𝜖}, 1

C = {𝑘| − (𝒙⊤𝑘𝒘1 + 𝑏1) = 1 − 𝜖},
and 1 = {𝑘| − (𝒙⊤𝒘 + 𝑏 ) > 1 − 𝜖}, as shown in Fig. 3.
C 𝑘 1 1
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Fig. 3. Partition of the sample set  for the QPP (3).

3.5. Model transformation of the QPP (2)

Let 𝑐3 = 𝑐4 =
1
𝜆2

, the QPP (2) can be rewritten as

min
𝒘2 ,𝑏2 ,𝜼,𝜻

𝜆2
2
‖𝐁𝒘2 + 𝑏2𝒆𝑛B‖

2 + 𝒆⊤𝑛A𝜼 + 𝒆
⊤
𝑛C
𝜻

s.t. (𝐀𝒘2 + 𝑏2𝒆𝑛A ) + 𝜼 ≥ 𝒆𝑛A ,

(𝐂𝒘2 + 𝑏2𝒆𝑛C ) + 𝜻 ≥ (1 − 𝜖)𝒆𝑛C ,

𝜼 ≥ 0𝒆𝑛A , 𝜻 ≥ 0𝒆𝑛C .

(18)

By constructing the Lagrangian function of Eq. (18), we can obtain

2 =
𝜆2
2
‖𝐁𝒘2 + 𝑏2𝒆𝑛B‖

2 + 𝒆⊤𝑛A𝜼 + 𝒆
⊤
𝑛C
𝜻

− 𝝁⊤[(𝐀𝒘2 + 𝑏2𝒆𝑛A ) + 𝜼 − 𝒆𝑛A ]

− 𝝆⊤[(𝐂𝒘2 + 𝑏2𝒆𝑛C ) + 𝜻 − (1 − 𝜖)𝒆𝑛C ]

− 𝝓⊤𝜼 − 𝝍⊤𝜻 ,

(19)

where 𝝁 ∈ R𝑛A , 𝝆 ∈ R𝑛C , 𝝓 ∈ R𝑛A and 𝝍 ∈ R𝑛C are the non-negative
Lagrangian multipliers vectors. Let the partial derivatives of Lagrangian
function (19) w.r.t. 𝒘2, 𝑏2, 𝜼 and 𝜻 be 0 respectively, and we can get
𝜕2
𝜕𝒘1

=𝜆2𝐁⊤(𝐁𝒘2 + 𝑏2𝒆𝑛B ) − 𝐀⊤𝝁 − 𝐂⊤𝝆 = 0𝒆𝑚, (20)

𝜕2
𝜕𝑏2

=𝜆2𝒆⊤𝑛B (𝐁𝒘2 + 𝑏2𝒆𝑛B ) − 𝒆
⊤
𝑛A
𝝁 − 𝒆⊤𝑛C𝝆 = 0, (21)

𝜕2
𝜕𝜼

=𝒆𝑛A − 𝝁 − 𝝓 = 0𝒆𝑛A , (22)

𝜕2
𝜕𝜻

=𝒆𝑛C − 𝝆 − 𝝍 = 0𝒆𝑛C . (23)

Combining the KKT conditions with the QPP (18), we can obtain

𝝁⊤[(𝐀𝒘2 + 𝑏2𝒆𝑛A ) + 𝜼 − 𝒆𝑛A ] = 0, (24)

𝝆⊤[(𝐂𝒘2 + 𝑏2𝒆𝑛C ) + 𝜻 − (1 − 𝜖)𝒆𝑛C ] = 0, (25)

𝝓⊤𝜼 = 0, (26)

𝝍⊤𝜻 = 0. (27)

From Eqs. (20) and (21), we can obtain

𝜆2

[

𝐁⊤

𝒆⊤𝑛B

]

[

𝐁 𝒆𝑛B
]

[

𝒘2
𝑏2

]

−

[

𝐀⊤

𝒆⊤𝑛A

]

𝝁 −

[

𝐂⊤

𝒆⊤𝑛C

]

𝝆 = 0𝒆𝑚+1. (28)

Let 𝒗 = [𝒘2; 𝑏2], the above equation can be rewritten as

𝜆2𝐆⊤𝐆𝒗 − 𝐅⊤𝝁 −𝐇⊤𝝆 = 0𝒆𝑚+1. (29)

Therefore, the solution of the QPP (18) can be obtained when the
matrix 𝐆⊤𝐆 is invertible.

𝒗 = 1
𝜆2

𝐆inv(𝐅⊤𝝁 +𝐇⊤𝝆), (30)

where 𝐆inv represents the inverse matrix of 𝐆⊤𝐆. Similar to Eq. (16),
we also add the regularization term 𝛿𝐈 to avoid the ill-conditioning case
in this work.

𝐆 = (𝐆⊤𝐆 + 𝛿𝐈)−1. (31)
5

inv
Fig. 4. Partition of the sample set  for the QPP (18).

Fig. 5. Partition of the sample set  for the QPP (18).

According to Eq. (30), the function 𝑓2 can be represented as

𝑓2(𝒙) =
1
𝜆2

[

𝒙⊤ 1
]

𝐆inv(𝐅⊤𝝁 +𝐇⊤𝝆). (32)

3.6. Partition strategies of the QPP (18)

According to Eq. (30), the Lagrangian multipliers 𝝁 and 𝝆 of the
QPP (18) correspond to the sample in  and , but not to that in .
Hence, the samples in  and  need to be divided.

3.6.1. Partition strategy of samples in 
Combining the non-negative properties of Lagrangian multipliers

𝝁,𝝓 and Eq. (22), it is easy to obtain 0𝒆𝑛A ≤ 𝝁,𝝓 ≤ 𝒆𝑛A . According
to Hastie et al. (2004), by combining the constraint conditions in
Eqs. (20)–(23) and the KKT conditions in Eqs. (24)–(27) of the QPP
(18), we see that the sample 𝒙𝑖 (𝑖 ∈ ) can be discussed in three
situations: when 𝒙⊤𝑖 𝒘2 + 𝑏2 < 1, 𝜇𝑖 = 1; when 𝒙⊤𝑖 𝒘2 + 𝑏2 > 1, 𝜇𝑖 = 0;
when 𝒙⊤𝑖 𝒘2 + 𝑏2 = 1, 𝜇𝑖 can lie between 0 and 1.

Therefore, the samples in  can be divided into three sets, i.e.,
2
A = {𝑖| − (𝒙⊤𝑖 𝒘2 + 𝑏2) < 1}, 2

A = {𝑖| − (𝒙⊤𝑖 𝒘2 + 𝑏2) = 1}, and
2

A = {𝑖| − (𝒙⊤𝑖 𝒘2 + 𝑏2) > 1}, as shown in Fig. 4.

3.6.2. Partition strategy for samples in 
Similar to Section 3.6.1, it is easy to see that the sample 𝒙𝑘 (𝑘 ∈ )

can be discussed in three situations: when 𝒙⊤𝑘𝒘2 + 𝑏2 < 1 − 𝜖, 𝜌𝑘 = 1;
when 𝒙⊤𝑘𝒘2 + 𝑏2 > 1 − 𝜖, 𝜌𝑘 = 0; when 𝒙⊤𝑘𝒘2 + 𝑏2 = 1 − 𝜖, 𝜌𝑘 can lie
between 0 and 1.

Therefore, the samples in  can be divided into three sets, i.e.,
2
C = {𝑘| − (𝒙⊤𝑘𝒘2 + 𝑏2) < 1 − 𝜖}, 2

C = {𝑘| − (𝒙⊤𝑘𝒘2 + 𝑏2) = 1 − 𝜖},
and 2

C = {𝑘| − (𝒙⊤𝑘𝒘2 + 𝑏2) > 1 − 𝜖}, as shown in Fig. 5.

4. Solution path for twin multi-class support vector machine

This section aims to find the entire regularized solutions for all the
values of the regularization parameter 𝜆 > 0. To this end, we first prove
that the solution is piecewise linear w.r.t. 𝜆, which greatly reduces
computational cost. Let 𝜆 go from very large to 0, and then we just need
to find all the break points for the 𝜆 to figure out the entire solution
path.
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4.1. Piecewise linear theory

The matrices 𝐅E, 𝐆E and 𝐇E are used to represent the sample matrix
composed of the elbow A, 𝐵 and 𝐶 . Let 𝑛A = |A|, 𝑛B = |𝐵|,
𝑛C = |𝐶 |, 𝑛BC = |𝐵| + |𝐶 | and 𝑛AC = |A| + |𝐶 |. For convenient
notations, the 𝑙th step parameters are assigned a superscript ‘𝑙’ and that
of the two QPPs are assigned a superscript ‘1’ and ‘2’, respectively. For
example, 1,𝑙

B denotes the 𝑙-step index set w.r.t. the first QPP.

4.1.1. Piecewise linear w.r.t. 𝜆1
Theorem 1 can be used to prove that the Lagrangian multipliers 𝜶

and 𝜷 are piecewise linear w.r.t. the regularization parameter 𝜆1.

Theorem 1. For the QPP (3), 𝜆𝑙1 > 𝜆1 > 𝜆𝑙+11 , if the matrix

𝐄𝑙
BC =

[

𝐆𝑙
E

𝐇𝑙
E

]

𝐅inv
[

(𝐆𝑙
E)

⊤ (𝐇𝑙
E)

⊤] (33)

is invertible, then the Lagrangian multipliers 𝛼𝑖 (𝑖 = 1, 2,… , 𝑛𝑙B) and
𝛽𝑘 (𝑘 = 1, 2,… , 𝑛𝑙C) are piecewise linear w.r.t. the regularization parameter
𝜆1 respectively, which can be mathematically described below:

𝛼𝑖 = 𝛼𝑙𝑖 − (𝜆𝑙 − 𝜆)𝜃𝑙𝑖 , (34)

𝑘 = 𝛽𝑙𝑘 − (𝜆𝑙 − 𝜆)𝜃𝑙
𝑛𝑙B+𝑘

, (35)

here

𝑙 = (𝐄𝑙
BC)

−1

[

𝒆𝑛𝑙B
(1 − 𝜖)𝒆𝑛𝑙C

]

= (𝐄𝑙
BC)

−1𝒆𝑙𝑛BC .

(36)

roof. Theorem 1 can be proved in two steps, i.e., proving that
agrangian multipliers 𝛼𝑖 (𝑖 = 1, 2,… , 𝑛𝑙B) and 𝛽𝑘 (𝑘 = 1, 2,… , 𝑛𝑙C) are

piecewise linear w.r.t. the regularization parameter 𝜆1 respectively.
First of all, the 𝑙th step function of Eq. (17) is

𝑙
1(𝒙) = − 1

𝜆𝑙1

[

𝒙⊤ 1
]

𝐅inv(𝐆⊤𝜶𝑙 +𝐇⊤𝜷𝑙). (37)

By the following transformation about 𝑓1 and 𝑓 𝑙
1, we can obtain

𝑓1(𝒙) =
𝜆𝑙1
𝜆1

𝑓 𝑙
1(𝒙) + 𝑓1(𝒙) −

𝜆𝑙1
𝜆1

𝑓 𝑙
1(𝒙)

= 1
𝜆1

{𝜆𝑙1𝑓
𝑙
1(𝒙) +

[

𝒙⊤ 1
]

𝐅inv[𝐆⊤(𝜶𝑙 − 𝜶) +𝐇⊤(𝜷𝑙 − 𝜷)]}.
(38)

or ∀𝑖 ∈ 1,𝑙
B ∪1,𝑙

B and ∀𝑘 ∈ 1,𝑙
C ∪1,𝑙

C , there are 𝛼𝑙𝑖−𝛼𝑖 = 0 and 𝛽𝑙𝑘−𝛽𝑘 = 0
espectively. Therefore, the above Eq. (38) can be simplified as

1(𝒙) =
1
𝜆1

{𝜆𝑙1𝑓
𝑙
1(𝒙) +

[

𝒙⊤ 1
]

𝐅inv[𝐆⊤
E (𝜶

𝑙
E − 𝜶E) +𝐇⊤(𝜷𝑙E − 𝜷E)]}

= 1
𝜆1

{𝜆𝑙1𝑓
𝑙
1(𝒙) +

[

𝒙⊤ 1
]

𝐅inv
[

(𝐆𝑙
E)

⊤ (𝐇𝑙
E)

⊤]
[

𝜶𝑙
E − 𝜶E
𝜷𝑙E − 𝜷E

]

}.
(39)

or ∀𝑖 ∈ 1,𝑙
B and ∀𝑘 ∈ 1,𝑙

C , there are −𝑓1(𝒙𝑖) = −𝑓 𝑙
1(𝒙𝑖) = 1 and

−𝑓1(𝒙𝑘) = −𝑓 𝑙
1(𝒙𝑘) = 1 − 𝜖 respectively. Substitute these two obtained

conditions to Eq. (39) and combine it with Eq. (33), the following
system of linear equation w.r.t. the Lagrangian multipliers 𝜶E and 𝜷E
can be deduced.
[

𝐆𝑙
E

𝐇𝑙
E

]

𝐅inv
[

(𝐆𝑙
E)

⊤ (𝐇𝑙
E)

⊤]
[

𝜶𝑙
E − 𝜶E
𝜷𝑙E − 𝜷E

]

= 𝐄𝑙
BC

[

𝜶𝑙
E − 𝜶E
𝜷𝑙E − 𝜷E

]

= (𝜆𝑙1 − 𝜆1)𝒆𝑙𝑛BC .
(40)

If the matrix 𝐄𝑙
BC is invertible, then we can obtain

[

𝜶𝑙
E − 𝜶E
𝜷𝑙E − 𝜷E

]

= (𝜆𝑙1 − 𝜆1)(𝐄𝑙
BC)

−1𝒆𝑙𝑛BC

= (𝜆𝑙1 − 𝜆1)𝜽𝑙 .
(41)

In conclusion, Theorem 1 is proved. □
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According to Theorem 1, it is easy to obtain the following corollary:

Corollary 1. For the QPP (3), 𝜆𝑙1 > 𝜆1 > 𝜆𝑙+11 , the function 𝑓1 is piecewise
inear w.r.t. 1

𝜆1
, i.e.,

𝑓1(𝒙) =
1
𝜆1

[𝜆𝑙1𝑓
𝑙
1(𝒙) + (𝜆𝑙1 − 𝜆1)𝑔𝑙(𝒙)]

=
𝜆𝑙1
𝜆1

[𝑓 𝑙
1(𝒙) + 𝑔𝑙(𝒙)] − 𝑔𝑙(𝒙),

(42)

where

𝑔𝑙(𝒙) =
[

𝒙⊤ 1
]

𝐅inv
[

(𝐆𝑙
E)

⊤ (𝐇𝑙
E)

⊤]𝜽𝑙 . (43)

4.1.2. Piecewise linear w.r.t. 𝜆2
Analogously, Theorem 2 can be used to prove that the Lagrangian

multipliers 𝝁 and 𝝆 are piecewise linear w.r.t. the regularization param-
eter 𝜆2.

Theorem 2. For the QPP (18), 𝜆𝑙2 > 𝜆2 > 𝜆𝑙+12 , if the matrix

𝑙
AC =

[

𝐅𝑙
E

𝐇𝑙
E

]

𝐆inv
[

(𝐅𝑙
E)

⊤ (𝐇𝑙
E)

⊤] (44)

s invertible, then the Lagrangian multipliers 𝜇𝑖 (𝑖 = 1, 2,… , 𝑛𝑙A) and
𝑘 (𝑘 = 1, 2,… , 𝑛𝑙C) are piecewise linear w.r.t. the regularization parameter
2 respectively, which can be mathematically described below:

𝜇𝑖 = 𝜇𝑙
𝑖 − (𝜆𝑙 − 𝜆)𝜗𝑙𝑖 , (45)

𝑘 = 𝜌𝑙𝑘 − (𝜆𝑙 − 𝜆)𝜗𝑙
𝑛𝑙A+𝑘

, (46)

here

𝑙 = (𝐄𝑙
AC)

−1

[

𝒆𝑛𝑙A
(1 − 𝜖)𝒆𝑛𝑙C

]

= (𝐄𝑙
AC)

−1𝒆𝑙𝑛AC .

(47)

roof. Theorem 2 can be proved in two steps, i.e., proving that
agrangian multipliers 𝜇𝑖 (𝑖 = 1, 2,… , 𝑛𝑙A) and 𝜌𝑘 (𝑘 = 1, 2,… , 𝑛𝑙C) are
iecewise linear w.r.t. the regularization parameter 𝜆2 respectively.

First of all, the 𝑙th step function of Eq. (32) is

𝑙
2(𝒙) =

1
𝜆𝑙2

[

𝒙⊤ 1
]

𝐆inv(𝐅⊤𝝁𝑙 +𝐇⊤𝝆𝑙). (48)

By the following transformation about 𝑓2 and 𝑓 𝑙
2, we can obtain

2(𝒙) =
𝜆𝑙2
𝜆2

𝑓 𝑙
2(𝒙) + 𝑓2(𝒙) −

𝜆𝑙2
𝜆2

𝑓 𝑙
2(𝒙)

= 1
𝜆2

{𝜆𝑙2𝑓
𝑙
2(𝒙) −

[

𝒙⊤ 1
]

𝐆inv[𝐅⊤(𝝁𝑙 − 𝝁) +𝐇⊤(𝝆𝑙 − 𝝆)]}.
(49)

or ∀𝑖 ∈ 1,𝑙
A ∪1,𝑙

A and ∀𝑘 ∈ 1,𝑙
C ∪1,𝑙

C , there are 𝜇𝑙
𝑖−𝜇𝑖 = 0 and 𝜌𝑙𝑘−𝜌𝑘 = 0

respectively. Therefore, the above Eq. (49) can be simplified as

𝑓2(𝒙) =
1
𝜆2

{𝜆𝑙2𝑓
𝑙
2(𝒙) −

[

𝒙⊤ 1
]

𝐆inv[𝐅⊤
E (𝝁

𝑙
E − 𝝁E) +𝐇⊤(𝝆𝑙E − 𝝆E)]}

= 1
𝜆2

{𝜆𝑙2𝑓
𝑙
2(𝒙) −

[

𝒙⊤ 1
]

𝐆inv
[

(𝐅𝑙
E)

⊤ (𝐇𝑙
E)

⊤]
[

𝝁𝑙E − 𝝁E
𝝆𝑙E − 𝝆E

]

}.
(50)

For ∀𝑖 ∈ 1,𝑙
A and ∀𝑘 ∈ 1,𝑙

C , there are 𝑓2(𝒙𝑖) = 𝑓 𝑙
2(𝒙𝑖) = 1 and 𝑓2(𝒙𝑘) =

𝑓 𝑙
2(𝒙𝑘) = 1−𝜖 respectively. Substitute theses two obtained conditions to

Eq. (50) and combine it with Eq. (44), the following system of linear
equation w.r.t. the Lagrangian multipliers 𝝁E and 𝝆E can be deduced.
[

𝐅𝑙
E

𝐇𝑙
E

]

𝐆inv
[

(𝐅𝑙
E)

⊤ (𝐇𝑙
E)

⊤]
[

𝝁𝑙E − 𝝁E
𝝆𝑙E − 𝝆E

]

= 𝐄𝑙
AC

[

𝝁𝑙E − 𝝁E
𝝆𝑙E − 𝝆E

]

𝑙 𝑙
(51)
= (𝜆2 − 𝜆2)𝒆𝑛AC .



Expert Systems With Applications 210 (2022) 118361L. Chen et al.

[

C

g

−

4

m
i

T
i

E

If the matrix 𝐄𝑙
AC is invertible, then we can obtain

𝝁𝑙E − 𝝁E
𝝆𝑙E − 𝝆E

]

= (𝜆𝑙2 − 𝜆2)(𝐄𝑙
AC)

−1𝒆𝑙𝑛AC

= (𝜆𝑙2 − 𝜆2)𝝑
𝑙 .

(52)

In conclusion, Theorem 2 is proved. □

According to Theorem 2, it can be obtained the following corollary:

orollary 2. For the QPP (18), 𝜆𝑙2 > 𝜆2 > 𝜆𝑙+12 , the function 𝑓2 is piecewise
linear w.r.t. 1

𝜆2
.

𝑓2(𝒙) =
1
𝜆2

[𝜆𝑙2𝑓
𝑙
2(𝒙) − (𝜆𝑙2 − 𝜆2)ℎ𝑙(𝒙)]

=
𝜆𝑙2
𝜆2

[𝑓 𝑙
2(𝒙) − ℎ𝑙(𝒙)] + ℎ𝑙(𝒙),

(53)

where

ℎ𝑙(𝒙) =
[

𝒙⊤ 1
]

𝐆inv
[

(𝐅𝑙
E)

⊤ (𝐇𝑙
E)

⊤]𝝑𝑙 . (54)

4.2. Initialization

When the regularization parameters are infinite, it is easy to prove
that the corresponding Lagrangian multipliers are 1. Based on this re-
sult, we design an initialization algorithm to get the starting conditions.

4.2.1. Initializing 𝜆01
The general idea of initialization is to find the value of the La-

rangian multipliers 𝜶 and 𝛽 as the regularization parameter 𝜆01 ap-
proaches infinity, which can be concluded in Theorem 3.

Theorem 3. For the QPP (3), when the regularization parameter 𝜆01
is close to infinity, the Lagrangian multipliers 𝛼0𝑖 (𝑖 = 1, 2,… , 𝑛0B) and
𝛽0𝑘 (𝑘 = 1, 2,… , 𝑛0C) are equal to 1, i.e., 𝜆

0
1 → +∞ ⇒ 𝛼0𝑖 = 𝛽0𝑘 = 1,

Proof. When 𝜆01 → +∞, we can obtain −𝑓1(𝒙𝑖) = 0 < 1 − 𝜖 < 1 from
Eq. (17). From Fig. 2, −𝑓1(𝒙𝑖) < 1 is equivalent to 𝛼𝑖 = 1. From Fig. 3,
𝑓1(𝒙𝑘) < 1 − 𝜖 is equivalent to 𝛽𝑘 = 1.

In conclusion, Theorem 3 is proved. □

.2.2. Initializing 𝜆02
Accordingly, Theorem 4 is used to find the value of the Lagrangian

ultipliers 𝝁 and 𝝆 as the regularization parameter 𝜆02 approaches the
nfinity.

heorem 4. For the QPP (18), when the regularization parameter 𝜆02
s close to infinity, the Lagrangian multipliers 𝜇0

𝑖 (𝑖 = 1, 2,… , 𝑛0A) and
𝜌𝑘 (𝑘 = 1, 2,… , 𝑛0C) are equal to 1, i.e., 𝜆

0
2 → +∞ ⇒ 𝜇0

𝑖 = 𝜌0𝑘 = 1,

Proof. When 𝜆02 → +∞, we can obtain 𝑓1(𝒙𝑖) = 0 < 1− 𝜖 < 1 according
to Eq. (17). From Fig. 4, 𝑓1(𝒙𝑖) < 1 is equivalent to 𝜇𝑖 = 1. From Fig. 5,
𝑓1(𝒙𝑘) < 1 − 𝜖 is equivalent to 𝜌𝑘 = 1.

In conclusion, Theorem 4 is proved. □

4.2.3. Initialization algorithm
According to Theorems 3 and 4, it is obvious that Lagrangian

multipliers are equal to 1 as the regularization parameter approaches
infinity. At this point, the samples are all on the left of the elbow.
The basic idea of initialization is to gradually reduce the regularization
parameter until the first sample point reaches the elbow. Algorithm 1
describes the detailed process of initialization for the QPP (3), and it is
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in the same way for the QPP (18).
4.3. Finding 𝜆𝑙+1

The aim of finding 𝜆𝑙+1 is to update the regularization parameter
as long as the corresponding parameters, such as sample sets and
Lagrangian multipliers. Before designing the updating strategy, we first
give the definition of the event and starting event, as follows:

Definition 1. As the regularization parameter changes, the sample
index set will also be updated, and this change is defined as an event
in this work, represented by a symbolic ‘‘→’’.

Definition 2. If more than one event can occur, the event with the
largest regularization parameter value is selected to occur first and is
defined as the starting event in this work.

As analyzed in Section 3.4, the changes of samples in sets  and 
need to be discussed for the QPP (3). From Definition 1, there are eight
kinds of possible events in total, illustrated in Fig. 6. Next, we elaborate
on them one by one.

If 1
B ≠ ∅, then one of the sample points in 1

B may go into either
1
B or 1

B.

Event 1 If 1
B → 1

B, then 𝛼𝑖 changes from 0 ≤ 𝛼𝑖 ≤ 1 to 𝛼𝑖 = 1 and
𝑓1(𝒙𝑖) changes from −𝑓1(𝒙𝑖) = 1 to −𝑓1(𝒙𝑖) < 1. Combining 𝛼𝑖 = 1
with Eq. (34), we can obtain the corresponding regularization
parameter 𝜆11 by

𝜆11 = max
𝑖∈1,𝑙B

{𝜆𝑙1 −
𝛼𝑙𝑖 − 𝛼𝑖
𝜃𝑙𝑖

} = max
𝑖∈1,𝑙B

{𝜆𝑙1 −
𝛼𝑙𝑖 − 1

𝜃𝑙𝑖
}, (55)

where 𝜃𝑙𝑖 < 0.

Event 2 If 1
B → 1

B, then 𝛼𝑖 changes from 0 ≤ 𝛼𝑖 ≤ 1 to 𝛼𝑖 = 0 and
𝑓1(𝒙𝑖) changes from −𝑓1(𝒙𝑖) = 1 to −𝑓1(𝒙𝑖) > 1. Combining 𝛼𝑖 = 0
with Eq. (34), we can obtain the corresponding regularization
parameter 𝜆21 by

𝜆21 = max
𝑖∈1,𝑙B

{𝜆𝑙1 −
𝛼𝑙𝑖 − 𝛼𝑖
𝜃𝑙𝑖

} = max
𝑖∈1,𝑙B

{𝜆𝑙1 −
𝛼𝑙𝑖
𝜃𝑙𝑖

}, (56)

where 𝜃𝑙𝑖 > 0.

If 1
B ≠ ∅, then one of the sample points in 1

B may go into 1
B.

vent 3 If 1
B → 1

B, then 𝛼𝑖 changes from 𝛼𝑖 = 1 to 0 ≤ 𝛼𝑖 ≤ 1 and
𝑓1(𝒙𝑖) changes from −𝑓1(𝒙𝑖) < 1 to −𝑓1(𝒙𝑖) = 1. Combining
−𝑓1(𝒙𝑖) = 1 with Eq. (42), we can obtain the corresponding
regularization parameter 𝜆31 by

𝜆31 = max
𝑖∈1,𝑙

B

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑖) + 𝑔𝑙(𝒙𝑖)

𝑓1(𝒙𝑖) + 𝑔𝑙(𝒙𝑖)
} = max

𝑖∈1,𝑙
B

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑖) + 𝑔𝑙(𝒙𝑖)
−1 + 𝑔𝑙(𝒙𝑖)

}. (57)

If 1
B ≠ ∅, then one of the sample points in 1

B may go into 1
B.

Event 4 If 1
B → 1

B, then 𝛼 changes from 𝛼𝑖 = 0 to 0 ≤ 𝛼𝑖 ≤ 1 and
𝑓1(𝒙𝑖) changes from −𝑓1(𝒙𝑖) > 1 to −𝑓1(𝒙𝑖) = 1. Combining
−𝑓1(𝒙𝑖) = 1 with Eq. (42), we can obtain the corresponding
regularization parameter 𝜆41 by

𝜆41 = max
𝑖∈1,𝑙

B

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑖) + 𝑔𝑙(𝒙𝑖)

𝑓1(𝒙𝑖) + 𝑔𝑙(𝒙𝑖)
} = max

𝑖∈1,𝑙
B

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑖) + 𝑔𝑙(𝒙𝑖)
−1 + 𝑔𝑙(𝒙𝑖)

}. (58)

If 1
C ≠ ∅, then one of the sample points in 1

C may go into either
1 1
C or C.
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Algorithm 1: Initialization Algorithm of the QPP (3)
Input: System parameters 𝛿, 𝜖 and sample matrices 𝐀, 𝐁 and 𝐂.
Output: Initial parameters 𝜆01, initial Lagrangian multipliers 𝛼0𝑖 , 𝛽0𝑘 , and initial index sets 1,0

B , 1,0
B , 1,0

B , 1,0
C , 1,0

C and 1,0
C .

// Variable preparation phase
1 𝜶0 ← 𝒆𝑛B , 𝑛B ← size(𝐁, 1); // By Theorem 3.
2 𝜷0 ← 𝒆𝑛C , 𝑛B ← size(𝐂, 1); // By Theorem 3.
3 Obtain homogeneous matrices 𝐅, 𝐆 and 𝐇 from 𝐀, 𝐁 and 𝐂;
4 𝐈 ← eye(𝑚 + 1), 𝑚 ← size(𝐀, 1);
5 𝐅inv ← (𝐅⊤𝐅 + 𝛿𝐈)−1 ; // By Eq. (16)
6 𝜆01 ← 0; // Initialize a minimum number to 𝜆01
7 1,0

B , 1,0
C ← ∅,∅;

// Initialization phase for samples in : see Section 4.2.1
8 foreach 𝑖 ∈  do
9 𝜆 =

[

𝒙⊤𝑖 1
]

𝐅inv(𝐆⊤𝜶0 +𝐇⊤𝜷0); // By Eq. (17)
10 if 𝜆 > 𝜆01 then
11 𝜆01 ← 𝜆; // Update the regularization parameter by
12 1,0

B , 1,0
B ← {1,⋯ , 𝑖 − 1, 𝑖 + 1,⋯ , 𝑛B}, {𝑖} ; // Initialize samples in  when B → B

13 1,0
C , 1,0

C ← {1, 2,⋯ , 𝑛B},∅ ; // Initialize samples in 
14 end
15 end

// Initialization phase for samples in : see Section 4.2.2
16 foreach 𝑘 ∈  do
17 𝜆 = 1

1−𝜖

[

𝒙⊤𝑘 1
]

𝐅inv(𝐆⊤𝜶0 +𝐇⊤𝜷0); // By Eq. (17)
18 if 𝜆 > 𝜆01 then
19 𝜆01 ← 𝜆; // Update the regularization parameter by
20 1,0

C , 1,0
C ← {1,⋯ , 𝑖 − 1, 𝑖 + 1,⋯ , 𝑛C}, {𝑖} ; // Initialize samples in  when C → C

21 1,0
B , 1,0

B ← {1, 2,⋯ , 𝑛B},∅ ; // Initialize samples in 
22 end
23 end
24 return 𝜆01, 𝛼

0
𝑖 , 𝛽0𝑘 , 1,0

B , 1,0
B , 1,0

B , 1,0
C , 1,0

C and 1,0
C ;
Fig. 6. Possible events for the QPP (3): there are two scenarios and eight events for the sample sets  (left) and  (right).
Event 5 If 1
C → 1

C, then 𝛽 changes from 0 ≤ 𝛽𝑖 ≤ 1 to 𝛽𝑖 = 1 and
𝑓1(𝒙𝑘) changes from −𝑓1(𝒙𝑘) = 1 − 𝜖 to −𝑓1(𝒙𝑘) < 1 − 𝜖. Com-
bining 𝛽𝑖 = 1 with Eq. (35), we can obtain the corresponding
regularization parameter 𝜆51 by

𝜆51 = max
𝑘∈1,𝑙C

{𝜆𝑙1 −
𝛽𝑙𝑘 − 𝛽𝑘
𝜃𝑙
𝑛𝑙B+𝑘

} = max
𝑘∈1,𝑙C

{𝜆𝑙1 −
𝛽𝑙𝑘 − 1

𝜃𝑙
𝑛𝑙B+𝑘

}, (59)

where 𝜃𝑙
𝑛𝑙B+𝑘

> 0.

Event 6 If 1
C → 1

C, then 𝛽 changes from 0 ≤ 𝛽𝑖 ≤ 1 to 𝛽𝑖 = 0 and
𝑓1(𝒙𝑘) changes from −𝑓1(𝒙𝑘) = 1 − 𝜖 to −𝑓1(𝒙𝑘) > 1 − 𝜖. Com-
bining 𝛽𝑖 = 0 with Eq. (35), we can obtain the corresponding
regularization parameter 𝜆61 by

𝜆61 = max
𝑘∈1,𝑙C

{𝜆𝑙1 −
𝛽𝑙𝑘 − 𝛽𝑘
𝜃𝑙
𝑛𝑙B+𝑘

} = max
𝑘∈1,𝑙C

{𝜆𝑙1 −
𝛽𝑙𝑘

𝜃𝑙
𝑛𝑙B+𝑘

}, (60)

where 𝜃𝑙
𝑛𝑙B+𝑘

< 0.

If 1
C ≠ ∅, then one of the sample points in 1

C may go into 1
C.

Event 7 If 1
C → 1

C, then 𝛽 changes from 𝛽𝑖 = 1 to 0 ≤ 𝛽𝑖 ≤ 1 and
𝑓 (𝒙 ) changes from −𝑓 (𝒙 ) < 1−𝜖 to −𝑓 (𝒙 ) = 1−𝜖. Combining
8

1 𝑘 1 𝑘 1 𝑘
−𝑓1(𝒙𝑘) = 1 − 𝜖 with Eq. (42), we can obtain the corresponding
regularization parameter 𝜆71 by

𝜆71 = max
𝑘∈1,𝑙

C

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑘) + 𝑔𝑙(𝒙𝑘)

𝑓1(𝒙𝑘) + 𝑔𝑙(𝒙𝑘)
} = max

𝑘∈1,𝑙
C

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑘) + 𝑔𝑙(𝒙𝑘)

−(1 − 𝜖) + 𝑔𝑙(𝒙𝑘)
}.

(61)

If 1
C ≠ ∅, then one of the sample points in 1

C may go into 1
C.

Event 8 If 1
C → 1

C, then 𝛽 changes from 𝛽𝑖 = 0 to 0 ≤ 𝛽𝑖 ≤ 1 and
𝑓1(𝒙𝑘) changes from −𝑓1(𝒙𝑘) > 1−𝜖 to −𝑓1(𝒙𝑘) = 1−𝜖. Combining
−𝑓1(𝒙𝑘) = 1 − 𝜖 with Eq. (42), we can obtain the corresponding
regularization parameter 𝜆81 by

𝜆81 = max
𝑘∈1,𝑙

C

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑘) + 𝑔𝑙(𝒙𝑘)

𝑓1(𝒙𝑘) + 𝑔𝑙(𝒙𝑘)
} = max

𝑘∈1,𝑙
C

{𝜆𝑙1
𝑓 𝑙
1(𝒙𝑘) + 𝑔𝑙(𝒙𝑘)

−(1 − 𝜖) + 𝑔𝑙(𝒙𝑘)
}.

(62)

When the regularization parameter decreases as the iteration step
size increases, eight possible events in the above six cases are dis-
cussed above. One of these events that occurs is called as the starting
event. The criteria for selecting the starting event is that when this
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Fig. 7. Illustration of our proposed solution path algorithm for the QPP (18): According to Theorem 3, all of samples in  initially locate in B and C when the regularization
parameter 𝜆1 approaches infinity. Left: invoke Algorithm 1 to initialize the algorithm and obtain the initial index sets 1,0

B , 1,0
B ,1,0

B ,1,0
C , 1,0

C ,1,0
C . Middle: invoke Algorithm 2 to

update these parameters until the termination condition ends. Right: The ideal ending is that all of samples are located in B and C.
event occurs, the corresponding regularization parameter is at the
maximum among them and simultaneously greater than the minimum
threshold 𝜆min. Thus, the regularization parameter 𝜆𝑙+1 and the corre-
sponding starting event 𝑒start can be calculated the following equations,
respectively.

𝜆1 = max{𝜆11, 𝜆
2
1,… , 𝜆81}, (63)

𝑒start = arg max
𝑖=1,2,…,8

{𝜆11, 𝜆
2
1,… , 𝜆81}. (64)

In this way, the (𝑙 + 1) step parameters are updated according to
the starting event 𝑒start . Then the next iteration proceeds until the
regularization parameter 𝜆1 approaches the minimum threshold, which
is elaborated in Algorithm 2.

For the QPP (18), it is also similar to the above.

4.4. Solution path algorithm

Our proposed solution path algorithm is illustrated in Fig. 7. For the
sample set with 𝐾(𝐾 > 3) classes, to obtain the entire solution path of
regularization parameters 𝜆, we need the following three steps.

Step 1: The data set is randomly divided into training set and test
set, and the sampling rate of test samples is 𝑟.

Step 2: Any two categories of samples 𝐾𝑖 and 𝐾𝑗 (𝑖 ≠ 𝑗) are
randomly selected from the training sample set, denoted as class +1 and
−1, respectively, and the rest are denoted as class 0. Sets of the three
classes of samples are represented by ,  and . Therefore, there are
𝐾(𝐾−2)∕2 combinations for samples with 𝐾 categories, and the optimal
hyperplanes 𝑓1,𝑖,𝑗 (𝒙) and 𝑓2,𝑖,𝑗 (𝒙) corresponding to each combination
(𝐾𝑖, 𝐾𝑗 ) are calculated respectively.

Step 2.1: For the QPP (3), there are two steps to the solution.

• Initialization: Set the initial value of system parameters 𝛿 and 𝜖,
then invoke Algorithm 1 to determine the initial regularization
parameter 𝜆01, the initial Lagrangian multipliers 𝛼0𝑖 , 𝛽0𝑘 , the initial
index sets 1,0

B , 1,0
B , 1,0

B , 1,0
C , 1,0

C and 1,0
C .

• Updating: Invoke Algorithm 2 to get the entire solution to the QPP
(3).

Step 2.2: For the QPP (18), there are two steps to the solution
similar to the QPP (3).

Step 3: To determine the optimal regularization parameter pairs
(𝜆, 𝜆̄) and its corresponding hyperplanes 𝑓1,𝑖,𝑗 (𝒙) and 𝑓2,𝑖,𝑗 (𝒙), the
decision function 𝑓𝑖,𝑗 (𝒙) is utilized to evaluate the error for every
combination (𝐾𝑖, 𝐾𝑗 ) on the examining set, and it generates ternary
outputs {1, 0,−1}.

𝑓𝑖,𝑗 (𝒙) =
⎧

⎪

⎨

⎪

1, if 𝑓1,𝑖,𝑗 (𝒙) > −1 + 𝜖,

−1, if 𝑓2,𝑖,𝑗 (𝒙) < 1 − 𝜖, (65)
9

⎩
0, otherwise.
Step 4: Predict the classes of samples in the test set using 𝐾(𝐾−2)∕2
pairs of the optimal regularization parameters. For any sample 𝒙 in test
set, we need to calculate its votes under the decision function 𝑓𝑖,𝑗 (𝒙).

• If 𝑓1,𝑖,𝑗 (𝒙) > −1 + 𝜖, then class 𝐾𝑖 gets ‘‘1’’ vote.
• If 𝑓2,𝑖,𝑗 (𝒙) < 1−𝜖 and 𝑓1,𝑖,𝑗 (𝒙) < −1+𝜖, then class 𝐾𝑗 gets ‘‘1’’ vote.
• If 𝑓1,𝑖,𝑗 (𝒙) ≤ −1 + 𝜖 or 𝑓2,𝑖,𝑗 (𝒙) ≥ 1 − 𝜖, then both classes get ‘‘0’’

vote.
• If 𝑓1,𝑖,𝑗 (𝒙) > −1+ 𝜖 and 𝑓2,𝑖,𝑗 (𝒙) < 1− 𝜖, then both classes get ‘‘−1’’

vote.

Calculate the votes of 𝐾 classes of the sample under 𝐾(𝐾−2)∕2 decision
functions, and the class with the most votes is its final category.

5. Numerical experiments

In this section, we first verify the piecewise linear theory in Theo-
rems 1 and 2 with experiments. We further test the proposed algorithm
on prediction accuracy and training time in nine different data sets.
The computational overhead and time complexity of the proposed
algorithm are finally discussed.

5.1. Data sets

According to the data sets in the relevant works (Ding et al., 2019;
Xu et al., 2013), we have selected nine data sets with different feature
dimensions, number of categories and total number of instances to
evaluate the performance of the proposed algorithm. All the data sets
can be achieved from the UCI machine learning repository,2 including
Balancescale, CMC, Dermatology, Glass, Iris, Seeds, Thyroid, Vowel and
Wine. And the detailed description, such as the size of classes of these
data sets, is summarized in Table 1. The main goal of our work is to
save parameter tuning time, so we deleted a few classes for some data
sets. For instance, the original number of each class of data set Ecoli
is 143, 77, 2, 2, 35, 20, 5 and 52 respectively. To reduce the cross-
validation time, we can delete the classes with 3, 4 and 8 instances in
the experiments.

5.2. Implementation details

We compare against TSVM baselines with different strategies as
in OVOVR TSVM (Xu et al., 2013), OVR TSVM (Cong et al., 2008)
and OVO TSVM (Ding et al., 2019). We further compare against SVM
baselines with different strategies as in OVR SVM (Angulo et al.,
2003) and OVO SVM (Shieh & Yang, 2008). Note that all baselines
are implemented based on the idea of multi-class strategies and the

2 UCI machine learning repo: https://archive.ics.uci.edu/ml/index.php

https://archive.ics.uci.edu/ml/index.php
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Algorithm 2: Traversal Search Algorithm of the QPP (3)

Input: System parameters 𝜆min and 𝑙max, initial regularization parameter 𝜆01, initial Lagrangian multipliers 𝛼0𝑖 , 𝛽0𝑘 , initial index sets 1,0
B ,

1,0
B , 1,0

B , 1,0
C , 1,0

C and 1,0
C .

Output: Solution path 𝝀1, 𝜶 and 𝜷.
1 𝑙 ← 0;
2 while 𝜆𝑙1 ≥ 𝜆min 𝐚𝐧𝐝 𝑙 ≤ 𝑙max do
3 𝑛𝑙B ← length(1,𝑙

B ), 𝑛𝑙C ← length(1,𝑙
C ); // Number of samples in the elbow

4 Calculate 𝜽𝑙 according to Eq. (36);
// Traverses through 8 defined events to see if they occur

5 foreach 𝑒 ∈ {1, 2,⋯ , 8} do
6 if event 𝑒 occurs then
7 Obtain 𝜆𝑒1 according to Eqs. (55)–(62);
8 else
9 𝜆𝑒1 ← 0; // Assign 0 if the event 𝑒 does not occur
10 end
11 end

// Update the iteration and the (𝑙 + 1)-step parameters
12 𝜆𝑙+11 ← max{𝜆11, 𝜆

2
1,⋯ , 𝜆81}; // Obtain the regularization parameter by Eq. (63)

13 𝑒start ← argmax{𝜆11, 𝜆
2
1,⋯ , 𝜆81}; // Determine which event occurs by Eq. (64)

14 Update 1,𝑙+1
B , 1,𝑙+1

B ,1,𝑙+1
B ,1,𝑙+1

C , 1,𝑙+1
C ,1,𝑙+1

C according to the event 𝑒start ;
15 Update the Lagrangian multipliers 𝛼𝑙+1𝑖 , 𝛽𝑙+1𝑘 according to Theorem 1;
16 𝑙 ← 𝑙 + 1;
17 end
18 return 𝝀1, 𝜶 and 𝜷;
Table 1
Statistics of data sets used in this work.

No. Data sets # Tol.a # Db # Kc # Size of classes

1 Balancescale 625 4 3 49, 288, 288
2 CMC 1473 9 3 629, 333, 511
3 Glass 214 9 6 29, 76, 70, 17, 13, 9
4 Iris 150 4 3 50, 50, 50
5 Robotnavigation 5456 24 4 826, 2097, 2205, 328
6 Seeds 210 7 3 70, 70, 70
7 Thyroid 215 5 3 150, 35, 30
8 Vowel 871 3 6 72, 89, 172, 151, 207, 180
9 Wine 178 13 3 59, 71, 48

aThe total number of instances in the data set.
bThe dimension of the features of the instance in the data set.
cThe number of instance classes in the data set.
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riginal TSVM/SVM. We closely follow the experimental setting in Xu
t al. (2013). On the large data sets, 10-fold cross-validation method
s used to find the optimal parameters. Otherwise, we adopt leave-one
ethod for validation. In the experiment, we set 𝑟 = 0.25, 𝛿 = 10−4,
= 0.05, 𝑙max = 1000 and 𝜆min = 10−4. For the vote strategy, we

se two different decision functions to test ours and OVOVR TSVM.
urthermore, all the experiments are repeated ten times using the same
arameter configuration.

For the grid search method, suppose the regularization parameter
educes from 𝜆 = 1000, and the step is set to 𝛥𝜆 = 0.1. We use the

quadprog.m’ function to realize the QPP in MATLAB.
All the experiments are performed by MATLAB R2016b on a per-

onal computer equipped with an Intel (R) Core (TM) i7-7500U 2.90 GH
PU and 8 GB memory capacity.

.3. Results and analysis

We first visualize a classification process and an entirely regularized
olution path of two sub-optimization problems to verify the classi-
ication and pairwise linear theory, respectively. Then, we analyze
he first event and compare the prediction accuracy performance and
raining time with state-of-the-art methods. Finally, we discuss the
omputational overhead and time complexity of TSVMPath.
10
5.3.1. Case study
Visualization of classification results. To intuitively verify the correct-
ness of our proposed algorithm, we first construct a handcrafted data
set, including 3 classes with two-dimensional feature, and the test set
is shown in Fig. 8(a). Because it contains three classes, we need to
evaluate three combinations as mentioned in Section 4.4, i.e., (1,2), (1,
3) and (2, 3). The corresponding results are depicted in Figs. 8(d) to
8(f), where samples in three classes are pinked into different colored
markers and two non-parallel lines are shown in different colors. For
example, Fig. 8(f) illustrates the results of the combination (2,3). Three
classes are shown in blue circles, red triangles and yellow pentagrams,
labeled in ‘‘−1’’, ‘‘0’’ and ‘‘+1’’. Two non-parallel lines are shown in
yellow and blue, which correspond to 𝑤1𝑥1 + 𝑏1 = 0 and 𝑤2𝑥2 + 𝑏2 = 0.
Two decision boundaries 𝑤1𝑥1+𝑏1 > −1+𝜖 and 𝑤2𝑥2+𝑏2 < 1−𝜖 divides
he whole space to three areas w.r.t. three classes. The misclassified
amples are marked by a green circle. As shown in Fig. 8(f), the +1
rea contains a misclassified sample and it achieves an accuracy of
9.3333%. The final results are shown in Fig. 8(b), where our proposed
lgorithm achieves an accuracy of 99.3333%. However, the original
VOVR TSVM in Fig. 8(c) only achieves an accuracy of 96.6667%,
hich is 2.6666% less than ours.

Otherwise, Fig. 9 depicts the partial heatmaps of cross-validation
ccuracy for such three combinations. For example, Fig. 9(c) shows
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Fig. 8. Plots of classification results: (a) is the plot of original data with three classes; (b) and (c) are predicted results of ours and OVOVR TSVM; (d) to (f) are predicted results
of three combinations (1,2), (1,3) and (2,3), respectively. (Best viewed in color.)
Fig. 9. Partial heatmaps of cross-validation accuracy: (a) to (c) are cross-validation heatmaps of three combinations (1,2), (1,3) and (2,3), respectively.
the validation heatmap of the combination (2,3), where our proposed
algorithm achieves the highest accuracy of 99.12% on the validation
set. Notably, it achieves an accuracy of 99.3333% on the testing set,
indicating the effectiveness of our proposed algorithm.

Visualization of piecewise linear solution path. Figs. 10 and 11 show the
entire solution path of the regularization parameter 𝜆1 for the QPP (3)
and 𝜆2 for the QPP (18) on the data set Wine, where the regularization
parameters are on the 𝑙𝑜𝑔 scale. Figs. 10(a) and 11(a) depict the
variation digram of regularization parameters 𝜆1 and 𝜆2, where it can
be seen that the regularization parameters are reduced continuously to
0 with the step. Figs. 10(b), 10(c), 11(b) and 11(c) are entire solutions
of the Lagrangian multipliers 𝜶, 𝜷, 𝝁 and 𝝆 respectively. For example,
combining Fig. 10(b) with Fig. 10(a), it can be seen that the Lagrangian
multipliers 𝜶 are piecewise linear w.r.t. the regularization parameter 𝜆1;
combining Fig. 11(b) with Fig. 11(a), it can be seen that the Lagrangian
multipliers 𝝁 are piecewise linear w.r.t. the regularization parameter 𝜆1.
Therefore, the piecewise linear theory established in Theorems 1 and 2
can be experimentally verified.
11
Additionally, Figs. 10 and 11 also show the entire solution path of 𝒇 ,
𝒘 and 𝑏 w.r.t. two sub-optimization problems, respectively. For exam-
ple, it can be seen from Figs. 10(d) and 11(d) that the function values
are distributed in different intervals. As mentioned in Section 4.4, when
𝑓1 > −1 + 𝜖 in Fig. 10(d), we can obtain the +1 samples. In the similar
way, when 𝑓2 < 1 − 𝜖 in Fig. 11(d), we can obtain the −1 samples.
Combining Fig. 10(d) with Fig. 11(d), we can obtain the rest samples.

5.3.2. Prediction accuracy results
Ours vs grid search method. Faced with the parameter tuning problem,
one of the main strengths of the proposed algorithm is that we can
search for an entire solution path in the parameter space whereas
the grid search method can only find out limited solutions. Therefore,
our prediction accuracy results on the same data set are better than
the grid search method in most scenarios. Adopting the same data
set division strategy on nine different data sets, we have tested the
proposed algorithm and grid search method and the corresponding
results are shown in Fig. 12. Fig. 12(a) to 12(i) are plots on nine data
sets respectively. In each plot, the solid red line with circle markers
and the blue dotted line with square markers denote ours and the grid
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Fig. 10. An entire solution path on the data set Wine for the first QPP: (a) to (f) are the plots of 𝜆1, 𝜶, 𝜷, 𝒇 1, 𝒘1 and 𝑏1 respectively. (Note that 𝜆1 is on the log scale.)
Fig. 11. An entire solution path on the data set Wine for the second QPP: (a) to (f) are the plots of 𝜆2, 𝝁, 𝝆, 𝒇 2, 𝒘2 and 𝑏2 respectively. (Note that 𝜆2 is on the log scale.)
search method respectively. Note that we have repeated ten times on
each data set using different data set divisions in order to ensure the
reliability of the experiment. As can be seen in Fig. 12, our prediction
results are much better than the grid search method on several data
sets such as CMC, Iris, Seeds, Robotnavigation and Vowel. For the other
data sets, the prediction results for the two methods are about the same.

Other baselines. For the multi-classification problem, TSVM can be
combined with different strategies. Note that the proposed algorithm is
based on the OVOVR strategy. In this work, we compared our algorithm
with OVO TSVM and OVR TSVM. Furthermore, SVM can be combined
with OVO and OVR strategies to solve the multi-classification problems.
Therefore, we have also tested OVO SVM and OVR SVM. The detailed
results are elaborated in Table 2. Compared with other algorithms,
the prediction accuracy of the proposed algorithm is better than other
methods on dataset CMC, Iris, Robotnavigation, Seeds and Wine. For
the data set Iris, Seeds and Wine, the number of samples in different
categories is roughly the same. Therefore, the prediction accuracy is
very high. However, the prediction accuracies of different algorithms
are quite low for the data set CMC and Glass. The reason is that this
data set may be linearly indivisible, while we use the linear kernel for
all algorithms in this work. For data set Glass and Vowel with more than
3 classes, the prediction accuracy of ours and TSVM (OVOVR) are lower
than other algorithms. It is demonstrated that the OVOVR strategy is
12

slightly inferior compared with other strategies.
Although the prediction accuracy of our algorithm is not as good
as that of other algorithms on some data sets, the prediction accuracy
of our algorithm is generally superior to that of TSVM with the same
OVOVR strategy as can be seen from Fig. 12, indicating the effective-
ness of our proposed solution path algorithm. We highlight that the
main advantage of our algorithm is its low computational overhead
and complexity with comparable results, while the performance lifting
will be our future work. However, we have to admit that there are
some limitations to the OVOVR strategy, e.g., cross-validation among
different combinations is very time-consuming and the local optimal
solution combination cannot always achieve the global optimal.

5.3.3. Training time comparison
The average training time of different algorithms is summarized in

Table 3. In Table 3, we also list the average number of starting events of
a solution path. Furthermore, Table 4 elaborates on the average number
of starting events on each data set. The number of starting events
reflects the size of the corresponding solution path. To save time, we
just evaluate the training time of one solution for different algorithms.
The proposed algorithm can be used to solve the entire solution path
about regularization parameters. From Table 3, the training time of
ours is quite less than that of the others. Since we do not need to solve
any QPP to obtain the entire solution path, it can be seen from Table 3
that the time to solve QPP on the same data set is much longer than that
of ours, the linear solving time. Therefore, the main factor restricting
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Fig. 12. Prediction accuracy plots of ten times repeated experiments using ours and grid search method: (a) to (i) are prediction accuracy plots on each data set respectively; the
solid red line with circles and the dotted line with squares denote the results of ours and the grid search method.
Table 2
Average prediction accuracy (%) of different algorithms on each data sets.

Data set Ours TSVM TSVM TSVM SVM SVM
(OVOVR) (OVOVR) (OVR) (OVO) (OVR) (OVO)

Acc, ± Std. Acc, ± Std. Acc, ± Std. Acc, ± Std. Acc, ± Std. Acc, ± Std.

Balancescale 88.72 ± 1.55 88.65 ± 1.25 91.92 ± 2.44 88.21 ± 1.14 88.40 ± 1.61 91.47 ± 1.84
CMC 49.73 ± 1.90 41.04 ± 1.00 45.69 ± 1.07 43.92 ± 1.53 48.45 ± 1.96 51.36 ± 1.95
Glass 21.73 ± 10.88 31.92 ± 4.73 17.69 ± 7.73 32.69 ± 2.56 24.62 ± 4.42 39.23 ± 4.81
Iris 88.61 ± 7.23 79.72 ± 4.55 75.00 ± 7.52 96.39 ± 2.94 93.89 ± 4.10 98.33 ± 1.43
Robotnavigation 65.05 ± 1.09 64.05 ± 0.99 60.43 ± 2.81 60.38 ± 3.03 73.32 ± 1.34 75.07 ± 1.05
Seeds 93.92 ± 3.13 87.25 ± 5.49 92.16 ± 2.77 92.75 ± 1.61 92.35 ± 3.26 91.76 ± 4.01
Thyroid 91.15 ± 3.97 89.81 ± 2.73 83.27 ± 2.41 85.00 ± 4.33 95.96 ± 2.79 97.31 ± 3.03
Vowel 52.04 ± 4.95 45.97 ± 2.19 54.07 ± 1.82 53.56 ± 1.84 42.08 ± 13.42 81.67 ± 2.24
Wine 96.51 ± 2.74 94.88 ± 2.64 96.28 ± 2.94 94.65 ± 3.30 95.81 ± 2.14 95.58 ± 3.19
the training time is solving QPPs. The time to solve a QPP each time

also depends on the size of the data set, and for high-dimensional data

sets, the time to solve a QPP may even exceed a few hours. Therefore,

the time of solving QPPs is used to measure the computational cost of

different algorithms in this work.
13
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5.4. Discussion

In this section, we discuss the performance of the proposed algo-
rithm in terms of the computational overhead and the time complexity,
respectively.

Computational overhead. Because the maximum regularization param-
eter 𝜆 is reduced from 1000, and the step size of the regularization

arameter 𝜆 is 𝛥𝜆 = 0.1 when the grid search method is adopted.
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Table 3
Average training time (s) of different algorithms on each data sets.

Data set # Average starting events Timea (s) Training time of each solution (s)

QPP (3) QPP (18) Total Oursb TSVM TSVM TSVM SVM SVM
(OVOVR) (OVOVR) (OVR) (OVO) (OVR) (OVO)

Balancescale 517 731 1247 1.3149 0.0011 3.4525 0.8231 1.2516 0.0341 0.0331
CMC 1600 1053 2653 19.6988 0.0074 8.3385 4.5832 5.6763 2.4142 1.2867
Glass 2295 1587 3882 2.9809 0.0008 2.1671 0.4313 1.0795 0.0638 0.1211
Iris 122 123 245 0.7215 0.0029 0.1368 0.1049 0.1196 0.0266 0.0273
Robotnavigation 925 1000 1925 80.2642 0.0417 466.2647 239.3250 215.2090 21.2384 5.9840
Seeds 2880 1961 4841 0.5551 0.0001 0.1492 0.1428 0.1674 0.0278 0.0279
Thyroid 2974 2131 5105 0.4211 0.0001 0.2541 0.1876 0.2320 0.0762 0.0299
Vowel 3920 2957 6877 17.5491 0.0026 28.0308 7.9994 13.3788 53.1428 17.6766
Wine 178 209 387 0.8376 0.0022 0.1640 0.2616 0.1128 2.1981 0.9186

aAverage training time of entire solution for ours.
bAverage training time of each solution for ours.
Table 4
Average number of starting events on each data sets.

Data set Event 1 Event 2 Event 3 Event 4 Event 5 Event 6 Event 7 Event 8 Sum

Balancescale 53 203 206 61 85 269 275 95 1247
CMC 68 389 399 90 221 587 745 154 2653
Glass 88 491 500 116 331 957 1133 267 3882
Iris 7 53 51 9 7 55 53 10 245
Robotnavigation 71 321 337 72 129 425 464 106 1925
Seeds 136 680 685 169 374 1147 1335 315 4841
Thyroid 147 746 751 179 384 1192 1380 327 5105
Vowel 185 928 936 227 499 1722 1927 453 6877
Wine 25 65 67 28 25 74 71 32 387
Therefore, we need to solve 108 QPPs in each combination (𝐾𝑖, 𝐾𝑗 ) for
parameter tuning. In addition, we need to solve 𝐾(𝐾 − 1) × 108 QPPs to
figure out the solution path. Due to the limitation of computing power,
the grid search method cannot find the entire regularized solution
path. Fortunately, the proposed solution path algorithm can expand the
solution space of the regularized solution path to (0,+∞). Furthermore,
no QPP is required for the proposed solution path algorithm. Since
the training time of ours is linear, which is much less than that of
solving QPP. Obviously, compared with the grid search method, the
computational cost of the proposed algorithm will be greatly reduced. It
can be seen that the proposed solution path algorithm has a significant
advantage in parameter tuning.

Time complexity. Since Algorithm 1 needs to solve linear equations of
size 𝑛𝐵 + 𝑛𝐶 , its time complexity is (𝑛̄2) at least where 𝑛̄ denotes
the average sample size. According to Hastie et al. (2004), the time
complexity of Algorithm 2 is (𝑐𝑛̄2𝑚̄ + 𝑛̄𝑚̄2), where 𝑚̄ is the average
size of B and C and 𝑐 is a small number. In summary, the time
complexity of the whole algorithm is proportional to the square of
the data size. Additionally, the total computation burden of the entire
solution path algorithm is similar to that of a single OVOVR TSVM fit.
For example, Chen and Wu (2017) do not pay much attention to the
complexity of parameter tuning, thus the classification accuracy can be
guaranteed. They need to solve 𝐾 QPPs to obtain 𝐾 hyperplanes for
the multi-classification problem, which is more expensive than ours.
For the grid search method, we need to fit the OVOVR TSVM 𝑛grid
times, and the corresponding time complexity is also 𝑛grid times of
OVOVR TSVM fits, where 𝑛grid is the granularity of the grid, e.g., 𝑛grid
is equal to 2 × 104 as analyzed above in this work. Therefore, the
solution path algorithm can greatly reduce the computational burden
of parameter adjustment, with up to four orders of magnitude speed-
up for the computational complexity compared with the grid search
method. Furthermore, the convergence of solution path algorithm can
be guaranteed by Hastie et al. (2004).

6. Conclusion

In this work, the twin multi-class SVM with the OVOVR strategy
14

is studied and its fast regularization parameter tuning algorithm is
developed. The solutions of the two sub-optimization problems are
proved to be piecewise linear on the regularization parameters, and
the entire regularized solution path algorithm is developed accordingly.
The simulation results on UCI data sets show that the Lagrangian
multipliers are piecewise linear w.r.t. the regularization parameters
of the two sub-models, which lays a foundation for further selecting
regularization parameters and makes the generalization performance
of the twin multi-class support vector machine better. It should be
noted that no QPP is involved in the proposed algorithm, thus sharply
reducing the computational cost.
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